\name{Connecting} \Rdversion{1.1} \alias{Connecting} \title{ Combines the spectral clusters to build the connected components. } \description{ Considering some biological criterion based on density, the clusters which are identified by spectral clustering are combined to estimate biological populations.} \usage{ Connecting(full, society,conductance, number.of.clusters, labels.for_num.of.clusters, separation.factor, talk=TRUE) } \arguments{ \item{full}{ The matrix containing the coordinates of all data points. } \item{society}{ The list of communities.} \item{conductance}{ A matrix in which each entry is the conductance between two communities.} \item{number.of.clusters}{ A list containing the desired cluster numbers.} \item{labels.for_num.of.clusters}{ The k'th element of this list, is a vector containing the labels as result of clustering to k parts.} \item{separation.factor}{ This threshold controls to what extend clusters should be combined or kept separate.} \item{talk}{ A boolean flag with default value TRUE. Setting it to FALSE will keep running the procedure quite with no messages.} } \details{ A hint for setting \code{separation.factor}: While \code{separation.factor}=0.7 is normally an appropriate value for many datasets, for others some value in range 0.3 to 1.2 may produce better results depending on what populations are of particular interest. } \value{ Returns two objects: 1) label, a vector containing the labels that determines to which component each data point belongs. 2) clusters.graph, the max.conductance matrix that describes the original graph based on clusters. } \references{ Zare, H. and Shooshtari, P. and Gupta, A. and Brinkman R.B: Data Reduction for Spectral Clustering to Analyse High Throughput Flow Cytometry Data. BMC Bioinformatics, 2010, 11:403.} \author{ Parisa Shooshtari and Habil Zare } \seealso{ \code{\link{SamSPECTRAL}} } \examples{ \dontrun{ library(SamSPECTRAL) # Reading data file which has been transformed using log transform data(small_data) full <- small # Parameters: m <- 3000; ns <- 200; sl <- 3; cwt <-1; precision <- 6; mnc <-30 # Sample the data and build the communities society <- Building_Communities(full=full,m=m, space.length=sl, community.weakness.threshold=cwt) # Compute conductance between communities conductance <- Conductance_Calculation(full=full, normal.sigma=ns, space.length=sl, society=society, precision=precision) # Use spectral clustering to cluster the data clust_result <- Civilized_Spectral_Clustering(full=full, maximum.number.of.clusters=mnc, society=society, conductance=conductance) number.of.clusters <- clust_result@number.of.clusters labels.for_num.of.clusters <- clust_result@labels.for_num.of.clusters L <- labels.for_num.of.clusters[[number.of.clusters]] # plot(full, pch='.', col= L) # Connect components L <- Connecting(full=full, society=society, conductance=conductance, number.of.clusters=number.of.clusters, labels.for_num.of.clusters=labels.for_num.of.clusters, separation.factor=0.39) plot(full, pch='.', col= L) } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{cluster}