\name{plot} \Rdversion{1.1} \alias{plot.rpa} \title{Plot RPA results and probe-level data for a specific probeset.} \description{Plots the preprocessed probe-level observations, estimated probeset-level signal, and probe-specific variances. It is also possible to highlight individual probes and external summary measures.} \usage{plot.rpa(x, y = NULL, set, highlight.probes = NULL, pcol = "darkgrey", mucol = "black", ecol = "red", cex.lab = 1.5, cex.axis = 1, external.signal = NULL, main = NULL, ...)} \arguments{ \item{x,y }{Instances of the 'rpa class; y is optional and never used. Provided for consistency.} \item{set}{Probeset to plot.} \item{highlight.probes }{Optionally highlight some of the probes (with dashed line)} \item{pcol }{Color for probe signal visualization.} \item{mucol }{Color for summary estimate.} \item{ecol }{Color for external signal.} \item{cex.lab, cex.axis }{Axis adjustment parameters.} \item{external.signal }{Plot external signal on the probeset. For instance, an alternative summary estimate from another preprocessing methods.} \item{main}{Title for plot.} \item{...}{Other arguments to be passed.} } \value{Used for its side-effects. Returns probes x samples matrix of probe-level data plotted on the image.} \references{Probabilistic Analysis of Probe Reliability in Differential Gene Expression Studies with Short Oligonucleotide Arrays. Lahti et al., TCBB/IEEE. See http://bioconductor.org/packages/release/bioc/html/RPA.html} \author{Leo Lahti \email{leo.lahti@iki.fi}} \seealso{RPA.pointestimate} \examples{ # Not run: ## Load example data set #require(affydata) #data(Dilution) ## Compute RPA for specific probesets only #set <- "1000_at" #rpa.results <- RPA.pointestimate(Dilution, set) ## Visualize the results for one of the probe sets #plot.rpa(set, rpa.results) } \keyword{ methods }