\name{generateDBScores } \alias{generateDBScores} \alias{readDBScores} \alias{writeDBScores} \title{Database Scores Functions} \description{ This functions are used to generate scores of a PWM database. } \usage{ generateDBScores(inputDB,cc="PCC",align="SWU",nRand=1000,go=1,ge=0.5) readDBScores(file) writeDBScores(x, file) } \arguments{ \item{inputDB}{A list of PWM corresponding to the database.} \item{cc}{The metric name to be used :} \item{align}{The Alignment method to be used.} \item{go}{Gap open penality.} \item{ge}{Gap extension penality.} \item{nRand}{The number of random PWM to be generated. The more higer it is, the more accurate score will be.} \item{file}{A character string naming a file.} \item{x}{A numeric matrix corresponding to a score.} } \details{ The score reflects the biais of the database. It is used to compute more precisely e-value alignments. \code{generateDBScores} : Based on database properties (suchs as length, zero rate, invariant colums ), nRand matrix are generated. A score is calculated for each matrix length with the specified alignment method and metric. The \code{score} is associated to a database and a alignment method and metric so you don't have to generate it each time you use the same database. Use the \code{writeDBScores} and \code{readDBScores} instead. \code{readDBScores} : Read a score file. \code{writeDBScores} : Write a score file. } \value{A numeric matrix. Columns correspond respectively to the first matrix length, second matrix length, variance, mean, matrix number, distance min and max.} \section{Warning }{ Because of each matrix is compare to each other, computing time is exponential. You should be aware of this fact before provided a high nRand. 5000 is a good time/accuracy rate choice.} \author{Shaun Mahony, modified by Eloi Mercier <\email{emercier@chibi.ubc.ca}>} \seealso{'readDBScores', 'writeDBScores'} \references{Sandelin,A. and Wasserman,W.W. (2004) \code{Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinformatics}. J. Mol. Biol., 338, 207/215. } \examples{ #####Database and Scores##### path <- system.file(package="MotIV") jaspar <- readPWMfile(paste(path,"/extdata/jaspar2010.txt",sep="")) #jaspar.scores <- generateDBScores(inputDB=jaspar,cc="PCC",align="SWU",nRand=1000) #writeDBScores(jaspar.scores,paste(path,"/extdata/jaspar_PCC_SWU.scores",sep="")) jaspar.scores <- readDBScores(paste(path,"/extdata/jaspar2010_PCC_SWU.scores",sep="")) } \keyword{misc}