\name{plot-method} \docType{methods} \alias{plot-method} \alias{plot,RA-method} \title{Plot of Residual Variance and Array Effect} \description{Plots results from \code{estVC}} \usage{ \S4method{plot}{RA}(x,Atransf=c("both","sqrt","log"), abline=c("none","rq"),df=3,proportion=.7, col="black",col.rq="red") } \arguments{ \item{x}{An object of class \code{RA} resulting from \code{estVC}.} \item{Atransf}{Transformation to apply at Array Effect} \item{abline}{Add a line to the plot representing a quantile fit} \item{df}{Degrees of freedom of the quantile regression} \item{proportion}{Quantile to fit} \item{col}{Color for plotting points} \item{col.rq}{Color for plotting quantile line} } \references{ Calza et al., 'Normalization of oligonucleotide arrays based on the least variant set of genes', (2008, BMCBioinformatics); Pawitan, Y. 'In All Likelihood: Statistical Modeling and Inference Using Likelihood', (2001, Oxford University Press); Huber, P. J., 'Robust estimation of a location parameter', (1964, Annuas of Mathematical Statistics). } \author{ Stefano Calza , Suo Chen and Yudi Pawitan.} \seealso{\code{\link{estVC}},\code{\link{rq}}} \examples{ \dontrun{ # Starting from an EList object called MIR data("MIR-spike-in") AA <- estVC(MIR,method="joint") plot(AA) }} \keyword{ normalization } \keyword{ miRNA }