\name{hilbertCurve} \alias{hilbertCurve} \alias{hilbertCurvePoint} \title{ calculate finite approximations of the Hilbert curve } \description{ These functions calculate the Hilbert curve in its finite approximations. \code{hilbertCurvePoint} gives the coordinates of one point and \code{hilbertCurve} returns an array with the coordinates of all \code{4^lv} points. The functions are not needed for \code{\link{hilbertImage}} and only provided for demonstration purposes. \code{\link{plotHilbertCurve}} makes use of them. } \usage{ hilbertCurve( lv ) hilbertCurvePoint( t, lv ) } \arguments{ \item{lv}{The iteration level. A Hilbert curve of level \code{lv} spans a square with side length \code{2^lv} (coordinates ranging from 0 to \code{2^lv-1}) and has \code{4^lv} points.} \item{t}{The point index in the Hilbert curve. Must be an integer in \code{0:(4^lv-1)}.} } \value{ \code{hilbertCurvePoint} returns a vector of two integer numbers, both in the range \code{0:(2^lv-1)}, indicating the coordinates of point \code{t}. \code{huilbertCurve} returns a matrix with \code{4^lv} rows and 2 columns, giving all points of the curve at level \code{lv}. } \author{ Simon Anders, EMBL-EBI, \email{sanders@fs.tum.de}} \seealso{ \code{\link{plotHilbertCurve}} } \examples{ hilbertCurvePoint( 67, 4 ) hilbertCurve( 4 ) }