\name{FDRcollectionGsea} \alias{FDRcollectionGsea} \title{ Compute the GSEA false discovery rates for a collection (list) of gene sets } \description{ This function computes the GSEA fdr over a list of gene sets } \usage{ FDRcollectionGsea(permScores, dataScores) } \arguments{ \item{permScores}{ a numeric matrix of permutation-based scores resulting from the output of collectionGsea } \item{dataScores}{ a named numeric vector of observed scores resulting from the output of collectionGsea } } \value{ a named numeric vector of FDR, one for each gene set } \references{ Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. & Mesirov, J. P. (2005) \emph{Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.} Proc. Natl. Acad. Sci. USA 102, 15545-15550. } \author{ Camille Terfve, Xin Wang } \seealso{ \code{\link[HTSanalyzeR:collectionGsea]{collectionGsea}}, \code{\link[HTSanalyzeR:permutationPvalueCollectionGsea]{permutationPvalueCollectionGsea}} } \examples{ ##example 1 gl <- runif(100, min=0, max=5) gl <- gl[order(gl, decreasing=TRUE)] names(gl) <- as.character(sample(x=seq(from=1, to=100, by=1), size=100, replace=FALSE)) gs1 <- sample(names(gl), size=20, replace=FALSE) gs2 <- sample(names(gl), size=20, replace=FALSE) gscs <- list(gs1=gs1, gs2=gs2) GSCscores <- collectionGsea(collectionOfGeneSets=gscs, geneList=gl, exponent=1, nPermutation=1000, minGeneSetSize=5) GSCfdrs <- FDRcollectionGsea(permScores=GSCscores$Permutation.scores, dataScores=GSCscores$Observed.scores) ##example 2 (see the vignette for details about the preprocessing of this ##data set) \dontrun{ library(org.Dm.eg.db) library(KEGG.db) data("KcViab_Data4Enrich") DM_KEGG <- KeggGeneSets(species="Dm") GSCscores <- collectionGsea(collectionOfGeneSets=DM_KEGG, geneList= KcViab_Data4Enrich, exponent=1, nPermutations=1000, minGeneSetSize=100) GSCfdrs <- FDRcollectionGsea(permScores=GSCscores$Permutation.scores, dataScores=GSCscores$Observed.scores) } }