\name{nbinomGLMsForMatrix} \alias{nbinomGLMsForMatrix} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Fit negative binomial GLMs to a count matrix. } \description{ This is a low-level function that is wrapped by \code{\link{nbinomGLMTest}}. } \usage{ nbinomGLMsForMatrix(counts, sizeFactors, rawScv, modelFormula, modelFrame, quiet = FALSE, reportLog2 = TRUE, glmControl = list() ) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{counts}{ a matrix of integer counts. Rows for genes, Columns for samples. } \item{sizeFactors}{ a vector with a size factor for each column in 'counts'. } \item{rawScv}{ a vector with a raw SCV (i.e., a dispersion) for each row in 'counts'. } \item{modelFormula}{ a model formula. The left hand side should read 'count ~'. } \item{modelFrame}{ a model frame (with one row for each column in 'counts') } \item{quiet}{ whether to not print dots } \item{reportLog2}{ whether to convert reported coefficients from natural log to log2 scale } \item{glmControl}{ list of additional parameters to be passed to \code{\link[stats]{glm.control}} } } \value{ A data frame with one row for each gene and columns as follows: \itemize{ \item{ one column for each estimated coefficient, on a log2 scale (i.e., the natural log reported by \code{\link{glm}} is rescaled to base 2) } \item{ a column 'deviance', with the deviance of the fit } \item{ a boolean column 'converged', indicating whether the fit converged } } Furthermore, the data frame has a scalar attribute 'df.residual' that contains the number of residual degrees of freedom. } \author{ Simon Anders, sanders@fs.tum.de } \examples{ # See the code of nbinomFitGLM for an example. }