\name{nbinomFitGLM} \alias{nbinomFitGLM} \title{ Fit a generalized linear model (GLM) for each gene. } \description{ Use this function to estimate coefficients and calculate deviance from a GLM for each gene. The GLM uses the \code{\link{nbkd.sf}} family, with the dispersion estimate according to \code{getVarianceFunction(cds)}. Note that this requires that the variance functions were estimated with method "pooled" or "blind". } \usage{ nbinomFitGLM( cds, modelFormula, glmControl=list() ) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{cds}{ a CountDataSet } \item{modelFormula}{ a formula. The left hand side must be 'count', the right hand side can involve any column of \code{pData(cds)}, i.e., \code{pData(cds)} is used as the model frame. If you have passed just a single factor to the 'conditions' argument of \code{\link{newCountDataSet}}, it can be referred to as 'condition' in the formula. If you have passed a data frame to 'conditions', all columns of this data frame will be available. } \item{glmControl}{ list of additional parameters to be passed to \code{\link[stats]{glm.control}} } } \value{ A data frame with one row for each gene and columns as follows: \itemize{ \item{ one column for each estimated coefficient, on a log2 scale (i.e., the natural log reported by \code{\link{glm}} is rescaled to base 2) } \item{ a column 'deviance', with the deviance of the fit } \item{ a boolean column 'converged', indicating whether the fit converged } } Furthermore, the data frame has a scalar attribute 'df.residual' that contains the number of residual degrees of freedom. } \author{ Simon Anders (sanders@fs.tum.de) } \seealso{ \code{\link{newCountDataSet}},\code{\link{nbinomGLMTest}}, \code{\link{nbkd.sf}} } \examples{ # see nbinomGLMTest for an example }