\name{DEGseq} \alias{DEGseq} \title{DEGseq: Identify Differentially Expressed Genes from RNA-seq data} \description{ This function is used to identify differentially expressed genes from RNA-seq data. It takes uniquely mapped reads from RNA-seq data for the two samples with a gene annotation as input. So users should map the reads (obtained from sequencing libraries of the samples) to the corresponding genome in advance. } \usage{ DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", readLength=32, strandInfo=FALSE, refFlat, groupLabel1="group1", groupLabel2="group2", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"), depthKind=1, replicate1="none", replicate2="none", replicateLabel1="replicate1", replicateLabel2="replicate2") } \arguments{ \item{mapResultBatch1}{vector containing uniquely mapping result files for technical replicates of sample1 (or replicate1 when \code{method="CTR"}).} \item{mapResultBatch2}{vector containing uniquely mapping result files for technical replicates of sample2 (or replicate2 when \code{method="CTR"}).} \item{fileFormat}{file format: \code{"bed"} or \code{"eland"}. \cr example of \code{"bed"} format: \code{chr12 7 38 readID 2 +} \cr example of \code{"eland"} format: \code{readID chr12.fa 7 U2 F} \cr \emph{Note}: The field separator character is \code{TAB}. And the files must follow the format as one of the examples. } \item{readLength}{the length of the reads (only used if \code{fileFormat="eland"}).} \item{strandInfo}{whether the strand information was retained during the cloning of the cDNAs. \itemize{ \item \code{"TRUE" }: retained, \item \code{"FALSE"}: not retained. } } \item{refFlat}{gene annotation file in UCSC refFlat format. \cr See \url{http://genome.ucsc.edu/goldenPath/gbdDescriptionsOld.html#RefFlat}. } \item{groupLabel1}{label of group1 on the plots.} \item{groupLabel2}{label of group2 on the plots.} \item{method}{method to identify differentially expressed genes. Possible methods are: \itemize{ \item \code{ "LRT"}: Likelihood Ratio Test (Marioni et al. 2008), \item \code{ "CTR"}: Check whether the variation between two Technical Replicates can be explained by the random sampling model (Wang et al. 2009), \item \code{ "FET"}: Fisher's Exact Test (Joshua et al. 2009), \item \code{"MARS"}: MA-plot-based method with Random Sampling model (Wang et al. 2009), \item \code{"MATR"}: MA-plot-based method with Technical Replicates (Wang et al. 2009), \item \code{ "FC" }: Fold-Change threshold on MA-plot. } } \item{pValue}{pValue threshold (for the methods: \code{LRT, FET, MARS, MATR}). \cr only used when \code{thresholdKind=1}.} \item{zScore}{zScore threshold (for the methods: \code{MARS, MATR}). \cr only used when \code{thresholdKind=2}.} \item{qValue}{qValue threshold (for the methods: \code{LRT, FET, MARS, MATR}). \cr only used when \code{thresholdKind=3} or \code{thresholdKind=4}.} \item{thresholdKind}{the kind of threshold. Possible kinds are: \itemize{ \item \code{1}: pValue threshold, \item \code{2}: zScore threshold, \item \code{3}: qValue threshold (Benjamini et al. 1995), \item \code{4}: qValue threshold (Storey et al. 2003), \item \code{5}: qValue threshold (Storey et al. 2003) and Fold-Change threshold on MA-plot are both required (can be used only when \code{method="MARS"}). } } \item{foldChange}{fold change threshold on MA-plot (for the method: \code{FC}).} \item{outputDir}{the output directory.} \item{normalMethod}{the normalization method: \code{"none", "loess", "median"} (Yang,Y.H. et al. 2002). \cr recommend: \code{"none"}. } \item{depthKind}{\code{1}: take the total number of reads uniquely mapped to genome as the depth for each replicate, \cr \code{0}: take the total number of reads uniquely mapped to all annotated genes as the depth for each replicate. \cr We recommend taking \code{depthKind=1}, especially when the genes in annotation file are part of all genes.} \item{replicate1}{files containing uniquely mapped reads obtained from replicate batch1 (only used when \code{method="MATR"}).} \item{replicate2}{files containing uniquely mapped reads obtained from replicate batch2 (only used when \code{method="MATR"}).} \item{replicateLabel1}{label of replicate batch1 on the plots (only used when \code{method="MATR"}).} \item{replicateLabel2}{label of replicate batch2 on the plots (only used when \code{method="MATR"}).} } \references{ Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. \emph{J. R. Stat. Soc. Ser. B} \bold{57}, 289-300. Jiang,H. and Wong,W.H. (2009) Statistical inferences for isoform expression in RNA-seq. \emph{Bioinformatics}, \bold{25}, 1026-1032. Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. \emph{BMC Genomics}, \bold{10}, 221. Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. \emph{Genome Res.}, \bold{18}, 1509-1517. Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. \emph{Proc. Natl. Acad. Sci.} \bold{100}, 9440-9445. Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, \emph{Bioinformatics} \bold{26}, 136 - 138. Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. \emph{Nucleic Acids Research}, \bold{30}, e15. } \seealso{ \code{\link{DEGexp}}, \code{\link{DEGseq.aln}}, \code{\link{getGeneExp}}, \code{\link{readGeneExp}}, \code{\link{kidneyChr21.bed}}, \code{\link{liverChr21.bed}}, \code{\link{refFlatChr21}}. } \examples{ kidneyR1L1 <- system.file("extdata", "kidneyChr21.bed.txt", package="DEGseq") liverR1L2 <- system.file("extdata", "liverChr21.bed.txt", package="DEGseq") refFlat <- system.file("extdata", "refFlatChr21.txt", package="DEGseq") mapResultBatch1 <- c(kidneyR1L1) ## only use the data from kidneyR1L1 and liverR1L2 mapResultBatch2 <- c(liverR1L2) outputDir <- file.path(tempdir(), "DEGseqExample") DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", refFlat=refFlat, outputDir=outputDir, method="LRT") cat("outputDir:", outputDir, "\n") } \keyword{methods}