%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Do not modify this file since it was automatically generated from: % % ./AN.test.R % % by the Rdoc compiler part of the R.oo package. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \name{AN.test} \alias{AN.test} \title{Performs the Adaptive Neyman test of Fan and Lin (1998)} \description{ Performs the Adaptive Neyman test of Fan and Lin (1998). } \usage{AN.test(X1, X2, candK=1:ncol(X1), na.rm=FALSE)} \arguments{ \item{X1}{A n1 x p \code{\link[base]{matrix}}, observed data for class 1: p variables, n1 observations.} \item{X2}{A n2 x p \code{\link[base]{matrix}}, observed data for class 2: p variables, n2 observations.} \item{candK}{A \code{\link[base]{vector}}, candidate values for the true number of Fourier components.} \item{na.rm}{A \code{\link[base]{logical}} value indicating whether variables with \code{\link[base]{NA}} in at least one of the n1 + n2 observations should be discarder before the test is performed.} } \value{ A \code{\link[base]{list}} with class "htest" containing the following components: \describe{ \item{statistic}{A \code{\link[base]{numeric}} value, the test statistic.} \item{p.value}{A \code{\link[base]{numeric}} value, the corresponding p-value.} \item{kstar}{A \code{\link[base]{numeric}} value, the estimated true number of Fourier components.} } } \author{Laurent Jacob, Pierre Neuvial and Sandrine Dudoit} \seealso{ \code{\link{BS.test}}() \code{\link{graph.T2.test}}() \code{\link{hyper.test}}() } \examples{ library("KEGGgraph") library("rrcov") data("Loi2008_DEGraphVignette") exprData <- exprLoi2008 classData <- classLoi2008 rn <- rownames(exprData) ## Retrieve expression levels data for genes from one KEGG pathway gr <- grListKEGG[[1]] gids <- translateKEGGID2GeneID(nodes(gr)) mm <- match(gids, rownames(exprData)) ## Keep genes from the graph that are present in the expression data set idxs <- which(!is.na(mm)) gr <- subGraph(nodes(gr)[idxs], gr) idxs <- which(is.na(mm)) if(length(idxs)) { print("Gene ID not found in expression data: ") str(gids[idxs]) } dat <- exprData[na.omit(mm), ] str(dat) X1 <- t(dat[, classData==0]) X2 <- t(dat[, classData==1]) ## DEGraph T2 test res <- testOneGraph(gr, exprData, classData, verbose=TRUE, prop=0.2) ## T2 test (Hotelling) rT2 <- T2.test(X1, X2) str(rT2) ## Adaptive Neyman test rAN <- AN.test(X1, X2, na.rm=TRUE) str(rAN) ## Adaptive Neyman test from Fan and Lin (1998) rAN <- AN.test(X1, X2, na.rm=TRUE) str(rAN) ## Test from Bai and Saranadasa (1996) rBS <- BS.test(X1, X2, na.rm=TRUE) str(rBS) ## Hypergeometric test pValues <- apply(exprData, 1, FUN=function(x) { tt <- t.test(x[classData==0], x[classData==1]) tt$p.value }) str(pValues) names(pValues) <- rownames(exprData) rHyper <- hyper.test(pValues, gids, thr=0.01) str(rHyper) }