\name{deds.pval} \alias{deds.pval} \title{Differential Expression via Distance Summary of p Values from Multiple Models} \description{ \code{deds.pval} integrates different \eqn{p} values of differential expression (DE) to rank and select a set of DE genes. } \usage{ deds.pval(X, E = rep(0, ncol(X)), adj = c("fdr", "adjp"), B = 200, nsig = nrow(X)) } \arguments{ \item{X}{A matrix, with \eqn{m} rows corresponding to variables (hypotheses) and \eqn{n} columns corresponding to \eqn{p} values from different statistical models.} \item{E}{A numeric vector indicating the location of the most extreme \eqn{p} values in the direction of differential expression.} \item{adj}{A character string specifying the type of multiple testing adjustment. \cr If \code{adj="fdr"}, False Discovery Rate is controlled and q values are returned. \cr If \code{adj="adjp"}, adjusted \eqn{p} values that controls family wise type I error rate is returned.} \item{B}{The number of permutations. For a complete enumeration, \code{B} should be 0 (zero) or any number not less than the total number of permutations.} \item{nsig}{A numeric variable specifying the number of top genes that will be returned.} } \details{ \code{deds.pval} summarizes \eqn{p} values from multiple statistical models for the evidence of DE. The DEDS methodology treats each gene as a point corresponding to a gene's vector of DE measures. An "extreme origin" is defined as the point that indicate DE, typically a vector of zero \eqn{p} values. The distance from all points to the extreme is computed and the ranking of a gene for DE is determined by the closeness of the gene to the extreme. To determine a cutoff for declaration of DE, null referent distributions are generated using an approach similar to the gap statistic (see Reference below). DEDS can also summarize different statistics, see \code{\link{deds.stat}} and \code{\link{deds.stat.linkC}}. } \value{ An object of class \code{\link{DEDS}}. See \code{\link{DEDS-class}}. } \references{ Tibshirani, R., Walther G., and Hastie T. (2000). Estimating the number of clusters in a dataset via the gap statistic. Department of Statistics, Stanford University, http://www-stat.stanford.edu/~tibs/ftp/gap.ps Yang, Y.H., Xiao, Y. and Segal M.R.: Selecting differentially expressed genes from microarray experiment by sets of statistics. \emph{Bioinformatics} 2005 21:1084-1093. } \author{Yuanyuan Xiao, \email{yxiao@itsa.ucsf.edu}, \cr Jean Yee Hwa Yang, \email{jean@biostat.ucsf.edu}. } \seealso{\code{\link{deds.stat}}, \code{\link{deds.stat.linkC}}.} \examples{ } \keyword{htest}