\name{comp.t} \alias{comp.t} \title{Computing One and Two Sample t-statistic for Differential Expression } \description{ \code{comp.t} returns a function of one argument with bindings for \code{L}, \code{mu}, \code{var.equal}. This function accepts a microarray data matrix as its single argument, when evaluated, computes t statistics for each row of the matrix. } \usage{ comp.t(L = NULL, mu = 0, var.equal = FALSE) } \arguments{ \item{L}{A vector of integers corresponding to observation (column) class labels. For \eqn{k} classes, the labels must be integers between 0 and \eqn{k-1}. } \item{mu}{A number indicating the true value of the mean (or difference in means if you are performing a two sample test). } \item{var.equal}{a logical variable indicating whether to treat the two variances as being equal. If \code{TRUE} then the pooled variance is used to estimate the variance otherwise the Welch statistic will be calculated. } } \details{ The function returned by \code{comp.t} calculates t statistics for each row of the microarary data matrix, given specific class labels. } \value{ \code{comp.t} returns a function with bindings for \code{L}, \code{mu}, \code{var.equal}, which calculates and returns of vector of t statistics for each row in the data matrix. } \author{Yuanyuan Xiao, \email{yxiao@itsa.ucsf.edu}, \cr Jean Yee Hwa Yang, \email{jean@biostat.ucsf.edu}. } \seealso{\code{\link{comp.FC}}, \code{\link{comp.F}}} \examples{ X <- matrix(rnorm(1000,0,0.5), nc=10) L <- rep(0:1,c(5,5)) # genes 1-10 are differentially expressed X[1:10,6:10]<-X[1:10,6:10]+1 # two sample test, unequal variance t.fun <- comp.t(L) t.X <- t.fun(X) # two sample test, equal variance t.fun <- comp.t(L, var.equal=TRUE) t.X <- t.fun(X) } \keyword{univar}