\name{comp.stat} \alias{comp.stat} \title{Computing Test Statistics for Differential Expression} \description{ This function computes test statistics, e.g., t-statistics, F-statistics, SAM, fold changes, moderated t or F statistics, B statistics, for each row of a microarray data matrix. } \usage{ comp.stat(X, L, test = c("t", "fc", "sam", "f", "modt", "modf", "B"), extra = NULL) } \arguments{ \item{X}{A matrix, with \eqn{m} rows corresponding to variables (hypotheses) and \eqn{n} columns to observations. In the case of gene expression data, rows correspond to genes and columns to mRNA samples. The data can be read using \code{\link{read.table}}.} \item{L}{A vector of integers corresponding to observation (column) class labels. For \eqn{k} classes, the labels must be integers between 0 and \eqn{k-1}.} \item{test}{A character string specifying the statistic to be used to test the null hypothesis of no association between the variables and the class labels.\cr \tabular{ll}{ \code{test="t"}: \tab t-statistics; \cr \code{test="f"}: \tab F-statistics;\cr \code{test="fc"}:\tab fold changes;\cr \code{test="sam"}: \tab SAM-statistics; \cr \code{test="modt"}: \tab moderated t-statistics;\cr \code{test="modf"}: \tab moderated F-statistics; \cr \code{test="B"}: \tab B-statistics.}} \item{extra}{Extra parameter needed for the test specified; see \code{\link{deds.genExtra}}.} } \details{ The function \code{comp.stat} interfaces to a C function and computes various statistics for differential expression in the C environment and therefore faster than functions in R. However, functions in R that are implemented in the DEDS packages may have more flexibility in terms of specifications of arguments. Below is a table the details \code{comp.stat} and its equivalent R functions in the DEDS package. Note that all the R functions listed in the 2nd column of the table below return a function with bindings for a series of arguments which accept the microarray data matrix as its single argument and compute accordingly statistics. \cr \tabular{lll}{ Interface to C \tab R functions \tab Statistics \cr deds.stat(X, L, test="t") \tab tTest(L=NULL, mu=0, var.equal=FALSE) \tab t statistics \cr deds.stat(X, L, test="fc") \tab FC(L=NULL, is.log=TRUE, FUN=mean) \tab fold change \cr deds.stat(X, L, test="sam") \tab Sam(L=NULL, prob=0.5, B=200, stat.only=TRUE, verbose=FALSE, deltas, s.step=0.01, alpha.step=0.01, plot.it=FALSE) \tab SAM statistics \cr deds.stat(X, L, test="f") \tab fTest(L=NULL) \tab F statistics \cr deds.stat(X, L, test="modt") \tab tmodTest(L=NULL) \tab moderated t statistics \cr deds.stat(X, L, test="modf") \tab fmodTest(L=NULL) \tab moderated F statistics \cr deds.stat(X, L, test="B") \tab BTest(L=NULL, proportion=0.01) \tab B statistics } } \value{ A vector of test statistics for each row of the matrix. } \references{ For references on B-statistics and moderated t and F statistics: Lonnstedt, I. and Speed, T. P. (2002). Replicated microarray data. \emph{Statistica Sinica} \bold{12}, 31-46. Smyth, G. K. (2003). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. http://www.statsci.org/smyth/pubs/ebayes.pdf } \author{Yuanyuan Xiao, \email{yxiao@itsa.ucsf.edu}, \cr Jean Yee Hwa Yang, \email{jean@biostat.ucsf.edu}.} \seealso{\code{\link{deds.genExtra}}, for B statistics: \code{\link[limma]{lm.series}} and \code{\link[limma]{ebayes}} } \examples{ X <- matrix(rnorm(1000,0,0.5), nc=10) L <- rep(0:1,c(5,5)) # genes 1-10 are differentially expressed X[1:10,6:10]<-X[1:10,6:10]+1 # t statistics tstat <- comp.stat(X, L, test="t") # SAM, fudge factor set as the median of pooled genewise standard deviations samstat <- comp.stat(X, L, test="sam") # SAM, fudge factor set as the 90\% of pooled genewise standard deviations samstat <- comp.stat(X, L, test="sam", extra=c(0.9)) # moderated t modtstat <- comp.stat(X, L, test="modt") # B, proportion of differentially expressed genes is set at default, 1\% Bstat <- comp.stat(X, L, test="B") # B, proportion of differentially expressed genes is set at 10\% Bstat <- comp.stat(X, L, test="B", extra=c(0.1)) } \keyword{univar}