\name{comp.modF} \alias{comp.modF} \title{Computing Moderated t-statistics for Differential Expression} \description{ \code{comp.modF} returns a function of one argument with bindings for \code{L}. The function accepts a microarray data matrix as its single argument, when evaluated, computes moderated F-statistics by empirical Bayes shrinkage of the standard error toward a common value. } \usage{ comp.modF(L = NULL) } \arguments{ \item{L}{A vector of integers corresponding to observation (column) class labels. For \eqn{k} classes, the labels must be integers between 0 and \eqn{k-1}.} } \details{ The function returned by \code{comp.modF} computes moderated F statistics for the assessment of differential expression. It interfaces to a C function. \code{\link{comp.stat}} is another function that wraps around the C function that could be used for computing moderated F statistics. For details of moderated statistics, see Smyth (2003). } \value{ \code{comp.modF} returns a function (F) with the bindings for \code{L}. The function F when supplied with a microarray data matrix and evaluated will return a numeric vector of moderated F statistics for each row of the matrix. } \references{ Lonnstedt, I. and Speed, T. P. (2002). Replicated microarray data. \emph{Statistica Sinica} \bold{12}, 31-46. Smyth, G. K. (2003). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. http://www.statsci.org/smyth/pubs/ebayes.pdf } \author{ Yuanyuan Xiao, \email{yxiao@itsa.ucsf.edu}, \cr Jean Yee Hwa Yang, \email{jean@biostat.ucsf.edu}. } \seealso{\code{\link{comp.FC}}, \code{\link{comp.modt}}, \code{\link{comp.stat}}} \examples{ X <- matrix(rnorm(1000,0,0.5), nc=10) L <- rep(0:1,c(5,5)) # genes 1-10 are differentially expressed X[1:10,6:10]<-X[1:10,6:10]+1 fmod <- comp.modF(L) fmod.X <- fmod(X) # Another way of computing moderated F statistics fmod.X <- comp.stat(X, L, "modf") } \keyword{univar}