\name{comp.SAM} \alias{comp.SAM} \title{ Computing SAM Statistics for Differential Expression} \description{ \code{comp.SAM} returns a function of one argument. This function has a environment with bindings for a series of arguments (see below). It accepts a microarray data matrix as its single argument, when evaluated, computes SAM statistics for each row of the matrix. } \usage{ comp.SAM(L = NULL, prob = 0.5, B = 200, stat.only = TRUE, verbose = FALSE, deltas, s.step=0.01, alpha.step=0.01, plot.it=FALSE) } \arguments{ \item{L}{A vector of integers corresponding to observation (column) class labels. For \eqn{k} classes, the labels must be integers between 0 and \eqn{k-1}.} \item{prob}{A numeric variable used to set the fudge factor \eqn{s_0} in terms of the percentile of the standard deviations of the genes. If set as \code{NULL}, \eqn{s_0} is calculated using the algorithm by Tusher et al. (see reference).} \item{B}{The number of permutations. For a complete enumeration, \code{B} should be 0 (zero) or any number not less than the total number of permutations.} \item{stat.only}{A logical variable, if \code{TRUE}, only statistics are calculated and returned; if \code{FALSE}, false discovery rates (FDRs) for a set of \eqn{\delta}{delta}(\code{deltas}) are calculated and returned.} \item{verbose}{A logical variable, if \code{TRUE}, informative messages are printed during the computation process.} \item{deltas}{A vector of values for the threshold \eqn{\delta}{delta}; see Tusher et al.} \item{s.step}{A numeric variable specifying the size of the moving window across the gene-wise standard deviations for the selection of the fudge factor \eqn{s_0}.} \item{alpha.step}{A numeric variable specifying the increment of a percentile sequence between 0 and 1, from which the fudge factor will be chosen to minimize the coefficient of variation of statistics. } \item{plot.it}{A logical variable, if \code{TRUE}, a plot between the coefficient of variation and the percentile sequence will be made.} } \details{ The function returned by \code{comp.SAM} calculates SAM statistics for each row of the microarray data matrix, with bindings for \code{L}, \code{prob}, \code{B}, \code{stat.only}, \code{verbose}, \code{deltas}, \code{s.step}, \code{alpha.step} and \code{plot.it}. If \code{quantile=NULL}, the fudge factor \eqn{s_0} is calculated as the percentile of the gene-wise standard deviations that minimizes the coefficient of variation of the statistics; otherwise \eqn{s_0} is set as the specified percentile of standard deviations. If \code{stat.only=T}, only SAM statistics are returned; otherwise, permutation will be carried out to calculate the FDRs for a set of \code{deltas} specified and a FDR table will be returned in addition to the SAM statistics. } \value{ \code{SAM} returns a function (F) with bindings for a series of arguments. When \code{stat.only=T}, the function F when evaluated returns a numeric vector of SAM statistics; When \code{stat.only=F}, the function F when evaluated returns a list of the following components: \item{geneOrder}{Order of genes in terms of differential expression;} \item{sam}{Sorted SAM statistics;} \item{fdr.table}{A matrix with columns: delta, no.significance, no.positive, no.negatvie, FDR(50\%), FDR(90\%).} } \references{ Tusher, V.G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, \emph{PNAS}, 98, 5116-5121. } \author{ Yuanyuan Xiao, \email{yxiao@itsa.ucsf.edu}, \cr Jean Yee Hwa Yang, \email{jean@biostat.ucsf.edu}.} \seealso{\code{\link{comp.t}}} \examples{ X <- matrix(rnorm(1000,0,0.5), nc=10) L <- rep(0:1,c(5,5)) # genes 1-10 are differentially expressed X[1:10,6:10]<-X[1:10,6:10]+1 # two sample test, statistics only sam.fun <- comp.SAM(L) sam.X <- sam.fun(X) # two sample test, FDR sam.fun <- comp.SAM(L, stat.only=FALSE, delta=c(0.1, 0.2, 0.5)) sam.X <- sam.fun(X) } \keyword{univar}