\name{distance2Genes} \alias{distance2Genes} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Calculate relative positions of read-enriched regions regarding gene position } \description{ Calculate relative positions of read-enrichment regions regarding gene position } \usage{ distance2Genes(win, gff, t = 1, d1 = -3000, d2 = 1000) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{win}{ Data.frame structure obtained with the function \code{sigWin} } \item{gff}{ Data.frame structure obtained after loading a desired gff file} \item{t}{ Integer. Only distances of read-enriched regions with a score bigger than \code{t} will be considered} \item{d1}{ Negative integer. Minimum relative position regarding the start of the gene to be considered} \item{d2}{ Positive integer. Maximum relative position regarding the end of the gene to be considered} } \value{ data.frame structure where each row represents one relative position, and each column being: \item{peakName }{read-enriched region name} \item{p1 }{relative position regarding the start of the \code{gene} } \item{p2 }{relative position regarding the end of the \code{gene}} \item{gene }{name of the gene} \item{le }{length (bp) of the gene} } \references{ Muino et al. (submitted). Plant ChIP-seq Analyzer: An R package for the statistcal detection of protein-bound genomic regions. \cr Kaufmann et al.(2009).Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biology; 7(4):e1000090.} \author{ Jose M Muino, \email{jose.muino@wur.nl}} \seealso{ genesWithPeaks, CSAR-package } \examples{ ##For this example we will use the a subset of the SEP3 ChIP-seq data (Kaufmann, 2009) data("CSAR-dataset"); ##We calculate the number of hits for each nucleotide posotion for the control and sample. We do that just for chromosome chr1, and for positions 1 to 10kb nhitsS<-mappedReads2Nhits(sampleSEP3_test,file="sampleSEP3_test",chr=c("CHR1v01212004"),chrL=c(10000)) nhitsC<-mappedReads2Nhits(controlSEP3_test,file="controlSEP3_test",chr=c("CHR1v01212004"),chrL=c(10000)) ##We calculate a score for each nucleotide position test<-ChIPseqScore(control=nhitsC,sample=nhitsS) ##We calculate the candidate read-enriched regions win<-sigWin(test) ##We calculate relative positions of read-enriched regions regarding gene position d<-distance2Genes(win=win,gff=TAIR8_genes_test) }