\name{plotcmarrt} \alias{plotcmarrt} \title{ Histogram of p-values and normal QQ plots for standardized MA statistics} \description{ Plot the histograms of p-values and normal QQ plots under correlation structure and independence. } \usage{ plotcmarrt(cmarrt.ma, freq=FALSE) } \arguments{ \item{cmarrt.ma}{ output object from \code{\link{cmarrt.ma}}.} \item{freq}{see ?hist} } \details{ Diagnostic plots for comparing the distribution of standardized MA statistics under correlation and independence. } \value{ Histogram of p-values and normal QQ plots under correlation structure and independence. } \references{P.F. Kuan, H. Chun, S. Keles (2008). CMARRT: A tool for the analysiz of ChIP-chip data from tiling arrays by incorporating the correlation structure. \emph{Pacific Symposium of Biocomputing}\bold{13}:515-526. } \author{Pei Fen Kuan, Adam Hinz} \note{If the normal quantile-quantile plot deviates from the reference line for unbound probes, this indicates that Gaussian approximation is not suitable for analyzing this data.} \seealso{ \code{\link{cmarrt.ma}},\code{\link{qqnorm}} } \examples{ # dataPath <- system.file("extdata", package="Starr") # bpmapChr1 <- readBpmap(file.path(dataPath, "Scerevisiae_tlg_chr1.bpmap")) # cels <- c(file.path(dataPath,"Rpb3_IP_chr1.cel"), file.path(dataPath,"wt_IP_chr1.cel"), # file.path(dataPath,"Rpb3_IP2_chr1.cel")) # names <- c("rpb3_1", "wt_1","rpb3_2") # type <- c("IP", "CONTROL", "IP") # rpb3Chr1 <- readCelFile(bpmapChr1, cels, names, type, featureData=TRUE, log.it=TRUE) # ips <- rpb3Chr1$type == "IP" # controls <- rpb3Chr1$type == "CONTROL" # rpb3_rankpercentile <- normalize.Probes(rpb3Chr1, method="rankpercentile") # description <- c("Rpb3vsWT") # rpb3_rankpercentile_ratio <- getRatio(rpb3_rankpercentile, ips, controls, description, fkt=median, featureData=FALSE) # probeAnnoChr1 <- bpmapToProbeAnno(bpmapChr1) # peaks <- cmarrt.ma(rpb3_rankpercentile_ratio, probeAnnoChr1, chr=NULL, M=NULL,250,window.opt='fixed.probe') # plotcmarrt(peaks) } \keyword{hplot}