
The rtracklayer package

Michael Lawrence

November 11, 2008

1 Introduction

The rtracklayer package is an interface (or layer) between R and genome
browsers. Its main purpose is the visualization of genomic annotation tracks,
whether generated through experimental data analysis performed in R or loaded
from an external data source. The features of rtracklayer may be divided into
two categories: 1) the representation and import/export of track data and 2)
the control and querying of external genome browser sessions and views.

For working with track data, the package defines a data structure named
trackSet, which extends the Bioconductor eSet class. A trackSet contains in-
formation on the features of a track, including their chromosome, start and
end positions in the genome, as well as any associated experimental measure-
ments. Import and export from and to files is supported in various formats, see
Section 2.1.4.

The rtracklayer package currently interfaces with the UCSC web-based
genome browser as well as the locally installed Java-based Argo browser. Other
packages may provide drivers for other genome browsers through a plugin sys-
tem. With rtracklayer, the user may start a genome browser session, create
and manipulate genomic views, and import/export tracks and sequences to and
from a browser. Please note that not all features are necessarily supported by
every browser interface.

The rest of this vignette will consist of a number of case studies. First, we
consider an experiment investigating microRNA regulation of gene expression,
where the microRNA target sites are the primary genomic features of interest.

2 Gene expression and microRNA target sites

This section will demonstrate the features of rtracklayer on a microarray
dataset from a larger experiment investigating the regulation of human stem
cell differentiation by microRNAs. The transcriptome of the cells was measured
before and after differentiation by HG-U133plus2 Affymetrix GeneChip arrays.
We begin our demonstration by constructing an annotation dataset from the
experimental data, and then illustrate the use of the genome browser interface
to display interesting genomic regions in the UCSC browser.

1

2.1 Creating a target site track

For the analysis of the stem cell microarray data, we are interested in the ge-
nomic regions corresponding to differentially expressed genes that are known to
be targeted by a microRNA. We will represent this information as an annotation
track, so that we may view it in the UCSC genome browser.

2.1.1 Constructing the trackSet

In preparation for creating the microRNA target track, we first used limma
to detect the differentially expressed genes in the microarray experiment. The
locations of the microRNA target sites were obtained from MiRBase. Informa-
tion about the target sites on differentially expressed genes was stored in the
data.frame called targets.

> library("humanStemCell")

> data(fhesc)

> library("genefilter")

> filtFhesc <- nsFilter(fhesc)[[1]]

> library("limma")

> design <- model.matrix(~filtFhesc$Diff)

> hesclim <- lmFit(filtFhesc, design)

> hesceb <- eBayes(hesclim)

> tab <- topTable(hesceb, coef = 2, adjust.method = "BH",

+ n = 7676)

> tab2 <- tab[(tab$logFC > 1) & (tab$adj.P.Val < 0.01),

+]

> affyIDs <- tab2$ID

> library("microRNA")

> data(hsTargets)

> library("hgu133plus2.db")

> entrezIDs <- mappedRkeys(hgu133plus2ENTREZID[affyIDs])

> library("org.Hs.eg.db")

> mappedEntrezIDs <- entrezIDs[entrezIDs %in% mappedkeys(org.Hs.egENSEMBLTRANS)]

> ensemblIDs <- mappedRkeys(org.Hs.egENSEMBLTRANS[mappedEntrezIDs])

> targetMatches <- match(ensemblIDs, hsTargets$target,

+ 0)

> targets <- hsTargets[targetMatches,]

The following code creates the track from the targets dataset by passing
it to the trackSet constructor that is contained in the rtracklayer package.
The columns of targets are named according to the convention expected by
the constructor.

> head(targets)

name target chrom start end
555774 hsa-miR-16 ENST00000000412 12 8985197 8985217

2

415091 hsa-miR-509-3p ENST00000003084 7 117095440 117095461
594550 hsa-miR-612 ENST00000003834 17 23750064 23750088
398678 hsa-miR-423-3p ENST00000006015 7 27187935 27187957
607152 hsa-miR-125b ENST00000006101 17 43458623 43458643
608640 hsa-miR-324-3p ENST00000006658 17 45988032 45988051

strand
555774 -
415091 +
594550 +
398678 -
607152 -
608640 +

> library(rtracklayer)

> targetTrack <- trackSet(targets)

2.1.2 Accessing track information

The track information is now stored in the R session as a trackSet object. As
the trackSet class inherits from eSet defined in the Biobase package, it has slots
for storing feature information (featureData), experimental design information
(phenoData) and experimental measurements (assayData).

Most of the information for each feature in a track is stored in the feature-
Data. This includes the chromosome name, numeric start and end positions,
the DNA strand (+/-/NA), and any other information available. There are
methods for accessing the most commonly used fields: chrom, start, end, and
strand. For example, the following code retrieves the chromosome names and
then start positions for each feature in the track.

> head(chrom(targetTrack))

[1] "chr12" "chr7" "chr17" "chr7" "chr17" "chr17"

> head(start(targetTrack))

[1] 8985197 117095440 23750064 27187935 43458623 45988032

Exercises

1. Get the strand of each feature in the track

2. Calculate the length of each feature

3. Reconstruct (partially) the targets data.frame

3

2.1.3 Subsetting a trackSet

It is often helpful to extract subsets from trackSet instances, especially when
uploading to a genome browser. Subsets are specified by a set of features, as well
as a set of columns in the dataVals matrix, if any. The conventional [method
is employed for subsetting, where the first parameter, i, indexes the features
and j indexes the data columns. Both i and j may contain numeric, logical and
character indices, which behave as expected.

> first10 <- targetTrack[1:10]

> posTargets <- targetTrack[strand(targetTrack) == "+"]

The features may also be indexed by a genomeSegment instance (explained
later) or by chromosome. We give an example of the latter below for obtaining
all target sites on chromosome 1. In order to distinguish between a chromosome
name and a feature name, we cast the chromosome name to a chrid instance
with the chrid function.

> chr1Targets <- targetTrack[chrid("chr1")]

Exercises

1. Subset the track for all features on the negative strand of chromosome 2.

2.1.4 Exporting and importing tracks

Import and export of trackSet instances is supported in the following formats:
Browser Extended Display (BED), versions 1, 2 and 3 of the General Feature
Format (GFF), and Wiggle (WIG). Support for additional formats may be pro-
vided by other packages through a plugin system.

To save the microRNA target track created above in a format understood by
other tools, we could export it as BED. This is done with the export function,
which accepts a filename or any R connection object as its target. If a target
is not given, the serialized string is returned. The desired format is derived,
by default, from the extension of the filename. Use the format parameter to
explicitly specify a format.

> export(targetTrack, "targets.bed")

To read the data back in a future session, we could use the import function.
The source of the data may be given as a connection, a filename or a character
vector containing the data. Like the export function, the format is determined
from the filename, by default.

> restoredTrack <- import("targets.bed")

4

Exercises

1. Output the track to a file in the “gff” format.

2. Read the track back into R.

3. Export the track as a character vector.

2.2 Viewing the targets in a genome browser

For the next step in our example, we will load the track into a genome browser
for visualization with other genomic annotations. The rtracklayer package is
capable of interfacing with any genome browser for which a driver exists. In this
case, we will interact with the web-based UCSC browser, but the same code
should work for any browser.

2.2.1 Starting a session

The first step towards interfacing with a browser is to start a browser session,
represented in R as a browserSession object. A browserSession is primarily a
container of tracks and genomic views. The following code creates a browserS-
ession for the UCSC browser:

> session <- browserSession("ucsc")

Note that the name of any other supported browser could have been given here
instead of “ucsc”. To see the names of supported browsers, enter:

> genomeBrowsers()

[1] "ucsc" "argo"

2.2.2 Laying the track

Before a track can be viewed on the genome, it must be loaded into the session
using the layTrack function, as demonstrated below:

> session <- layTrack(session, targetTrack, name = "targets")

The name argument should be a character vector that will help identify the
track within session. Note that the invocation of layTrack above does not
specify an upload format. Thus, the default, “auto”, is used. Since the track
does not contain any data values, the track is uploaded as BED. To make this
explicit, we could pass “bed” as the format parameter.

Exercises

1. Lay a track with the first 100 features of targetTrack

5

2.2.3 Viewing the track

By default, the layTrack function creates a browserView, an object that repre-
sents a view of a particular set of tracks along a particular region of the genome.
For UCSC, this roughly corresponds to one tab or window in the web browser.
To override the automatic creation of a view, pass view = FALSE to the lay-
Track function.

The default view of the track attempts to show the entire track. The view
region is determined by a call to genomeSegment on the track object.

> genomeSegment(chr1Targets)

An object of class âĂIJgenomeSegmentâĂI
Slot "genome":
[1] "hg18"

Slot "chrom":
[1] "chr1"

Slot "start":
[1] 939753

Slot "end":
[1] 245386490

The returned value from genomeSegment is an instance of the genomeSegment
class, which specifies a segment of a genome by its genome name, chromosome
name and start and end positions. If any of the fields are empty, they stand for
wildcards.

Exercises

1. Get the genomeSegment describing the first feature in targetTrack.

2. Get the chromosome ID of that segment.

The target sites are distributed throughout the genome, so we will only be
able to view a few features at a time. In this case, we will view only the first
feature in the track. A convenient way to focus a view on a particular set
of features is to subset the track and pass the range of the subtrack to the
constructor of the view. Below we take a track subset that contains only the
first feature.

> subTargetTrack <- targetTrack[1]

Now we call the browserView function to construct the view and pass the
genomeSegment of the subtrack, zoomed out by a factor of 10, as the segment
to view. By passing the name of the targets track in the pack parameter, we
instruct the browser to use the “pack” mode for viewing the track. This results
in the name of the microRNA appearing next to the target site glyph.

6

> view <- browserView(session, genomeSegment(subTargetTrack)/10,

+ pack = "targets")

Exercises

1. Create a new view with the same region as view, except zoomed out 2X.

2. Create a view with the “targets” track displayed in “full” mode, instead of
“packed”.

2.2.4 A shortcut

There is also a shortcut to the above steps. The browseGenome function creates
a session for a specified browser, loads one or more tracks into the session and
creates a view of a given genome segment. In the following code, we create a
new UCSC session, load the track and view the first two features, all in one
call:

> browseGenome(tracks = targetTrack, segment = genomeSegment(subTargetTrack)/10)

It is even simpler to view the subtrack in UCSC by relying on parameter
defaults:

> browseGenome(subTargetTrack)

2.2.5 Downloading tracks

It is possible to query the browser to obtain the names of the loaded tracks and
to download the tracks into R. To list the tracks loaded in the browser, enter
the following:

> loaded_tracks <- tracks(session)

One may download any of the tracks, such as the“targets” track that was loaded
previously in this example.

> subTargetTrack <- trackSet(session, "targets")

By default, the segment of the track downloaded is the current default genome
segment associated with the session. One may download track data for any
genome segment, such as those on a particular chromosome.

> posTargets <- trackSet(session, "targets", genomeSegment(chr1Targets))

Exercises

1. Get the SNP under the first target, displayed in view.

2. Get the UCSC gene for the same target.

7

2.2.6 Accessing view state

The view variable is an instance of browserView, which provides an interface for
getting and setting view attributes. Note that for the UCSC browser, changing
the view state opens a new view, as a new page must be opened in the web
browser.

To programmatically query the segment displayed by a view, use the genome-
Segment method for a browserView.

> segment <- genomeSegment(view)

Similarly, one may get and set the names of the visible tracks in the view.

> visible_tracks <- tracks(view)

> tracks(view) <- visible_tracks

The visibility mode (hide, dense, pack, squish, full) of the tracks may be re-
trieved with the ucscTrackModes method.

> modes <- ucscTrackModes(view)

The returned value, modes, is of class ucscTrackModes. The modes may be
accessed using the [function. Here, we set the mode of our “targets” track to
“full” visibility.

> modes["targets"]

> modes["targets"] <- "full"

> ucscTrackModes(view) <- modes

Existing browser views for a session may be retrieved by calling the browserViews
method on the browserSession instance.

> views <- browserViews(session)

> length(views)

Exercises

1. Retrieve target currently visible in the view.

2. Limit the view to display only the SNP, UCSC gene and target track.

3. Hide the UCSC gene track.

3 CPNE1 expression and HapMap SNPs

Included with the rtracklayer package is a track object (created by the GGtools
package) with features from a subset of the SNPs on chromosome 20 from 60
HapMap founders in the CEU cohort. Each SNP has an associated data value
indicating its association with the expression of the CPNE1 gene according to
a Cochran-Armitage 1df test. The top 5000 scoring SNPs were selected for the
track.

We load the track presently.

8

> library(rtracklayer)

> data(cpneTrack)

3.1 Loading and manipulating the track

The data values for a track are stored as a numeric matrix under the name
dataVals within the assayData slot. The values may retrieved with the dataVals
method.

> head(dataVals(cpneTrack))

1
rs17093026 13.46035
rs1118233 13.03048
rs7273815 12.88458
rs2425078 12.87609
rs1970357 12.87609
rs12480408 12.87609

One use of extracting the data values is to plot the data.

> plot(start(cpneTrack), dataVals(cpneTrack))

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●
●●●●●
●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●● ● ●

●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
● ● ● ●●● ●● ● ●●●●●● ●● ● ●●●●●●●● ●● ●●●●● ● ●● ●●●● ●● ● ●● ● ●●●● ●●● ● ●●● ●● ●●● ● ●●●● ●● ●●●● ● ●●●●● ●●●● ● ●●● ● ● ● ● ● ●●●● ●●● ●● ●●●●●●●● ● ●● ●● ●●●● ●● ●● ●●● ●● ●●●●●●●●●●●● ● ●●●●● ●● ● ●●● ●●●●● ●●●●●● ●●●●●●●● ● ●● ● ●●●● ● ●●●●●●●●●●●●●●●● ● ●● ●●●●●● ● ●●●● ●● ● ●● ●● ● ●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●● ●●●●● ●● ● ●●● ●● ●● ●●●●●●● ●● ●● ●●●●● ● ●● ● ●● ●●● ●● ● ●● ●● ●●●● ●●● ● ●●●●●●●●●● ●●● ●● ●● ●●● ●●●● ● ●● ●●● ●● ● ●● ● ● ●●●●●●● ● ●● ●● ●●● ●●●● ●●●●● ●● ●●●●●●●●●● ● ● ●● ●●● ●●● ● ●●● ●●● ● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ●●●● ● ●●●●●●●●●●●●●● ●●●● ●●●●● ● ●●● ●● ● ●● ●●●●●●●●●●●●●●● ●● ● ● ● ●●● ● ● ●● ●●● ●●●● ●●●●●●●● ● ● ●●●●●●● ● ●● ● ●● ●● ● ●● ●●●● ● ●●● ● ●●● ● ●●●● ●● ● ●●● ●●●●●● ●●● ● ● ●●●●● ●● ●●●● ●●●●●● ●● ●●●●● ●● ● ●●● ●●●●● ●●● ●● ● ●● ●● ●●● ● ●●●●●●●●●● ● ●●●●● ● ●●● ● ●●● ●● ●●● ●●●●●●● ●●● ●●●● ●●● ● ● ● ●● ● ●●●●●●●● ●● ●● ● ● ●●●●●●●●●● ●●● ● ● ●●●●●● ● ●● ●●● ● ●●● ●● ● ●●● ● ●● ● ●● ●●● ●● ●● ●● ●● ● ●●● ●●●● ●● ●● ● ●●●●●●● ● ●●●● ●●●●● ●●●●●● ●●●●●●●●● ●● ● ●● ● ●● ● ●●●●●●●●●●● ● ● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●● ●● ● ●● ● ●●● ●● ● ●●●● ●●●●●●● ●● ●●●● ●●●● ●●●● ●● ● ●● ●●● ●●● ●●●●● ●●●● ●● ● ●● ●●●●●●●●●● ●● ●●● ● ●●● ●● ●●●● ●● ● ●● ● ●●●●●●● ● ● ●●● ●●●●● ● ●● ●●● ●●●● ● ●● ● ●●●● ● ●●●●●●●●● ●●● ●● ●●● ● ●●●●● ●●●● ●●●● ● ●● ●●●● ●● ●●● ●● ●●●● ●●● ●●●● ● ●●●●●●● ● ●●●●●●● ●●● ●● ●●●● ●● ●● ●● ● ●●●●●● ● ● ●●●● ● ●● ●●●●● ● ●● ● ●● ●●● ●● ● ●●● ●● ●● ●●●●● ●●●● ●● ●●● ●●● ●● ● ● ●● ● ●●● ● ●●● ● ●●●●●●● ● ●●●●●●● ●● ●●●●●● ● ●●● ●● ● ● ●● ●● ●● ●● ●● ●●● ●●●●● ●●●●● ●●●●●●●● ● ●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●● ●● ●● ●● ● ●● ●● ●●●●● ●●● ● ●●● ●● ●●●●●● ●●● ● ●●●●●●●●● ●●● ●● ●●●●●●● ●●●●● ● ●●●●●●●●●● ● ●●●●●●● ●●●● ●●● ●●●●● ●● ● ●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ● ●●●● ●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●●● ●● ●● ●●●● ●● ●● ●●●● ● ● ●●● ● ●●● ●●●●●●●●●●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●● ●●●●●● ●●●● ● ●●●● ● ●● ●● ●●● ●● ●●●●●●●● ●●● ●● ●●●● ● ● ●●● ●●●●●●●● ●●● ●●● ● ●●●●●● ●● ●● ● ●● ●●●●●● ● ●● ● ●●●●● ● ●●● ●●● ●●●●● ●●● ●●●●●● ●● ●● ●●● ●● ●● ●●●● ●● ●● ● ●●●●●●● ●● ● ● ●●● ● ●● ● ●● ●●●●●●●●●●● ● ● ●● ●●●●● ●● ●● ●●● ●●●●● ●● ● ● ●●● ●●● ●● ●● ●●● ● ●●●●● ●●●●● ●●● ●● ● ●●●●●●●●●●●●●●● ● ● ● ●●● ●● ● ●●●●●●●●● ● ●●● ●● ●● ● ● ●● ●●●● ●●●●●● ●● ●●●● ●●●●● ●●●● ●●●●●●● ●● ●●●●●● ●●● ●●●● ●● ●● ● ●●● ●● ●● ●●● ●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●● ●●● ●●●●●●●● ●●●●● ● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●●● ●●● ● ●●● ●● ● ● ●●●●● ●●● ●● ● ●● ●●●● ● ●●● ●●●● ● ●●●●●●●●●●●●●● ●●●●● ● ● ● ●●●● ● ● ● ● ●●●● ●●●● ●●●● ● ● ●● ●●●●●●●● ● ●● ● ●●●● ● ●●● ●● ●●●●●●●●● ●● ●●● ●● ●●●●● ● ●●●● ●● ● ●●● ●● ●● ●●●●●●●●●●●●●●●● ● ●●● ●●●●●● ● ●● ●● ● ●● ●●● ●● ●●●●●●●●● ●● ●● ●● ● ● ●●● ●●●●●●● ●● ●● ● ●● ●● ●● ●● ●●● ●●●●● ●● ●● ●●● ●● ●●● ● ●● ● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●●●●●● ● ●●●●●● ●●●●●●●●●●● ●● ●● ●●●●●●● ●●●● ●● ●●● ●●● ●●●●●● ●●● ●●● ●●●● ● ●● ● ●●● ● ●● ●●●●●● ●●●●● ●● ●●●● ●●● ●● ●●●● ● ●●●●●●● ●●●●● ●● ● ●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●● ●● ●●●●●●●● ●● ●●● ●● ●●●●● ●●● ●●●● ●●●●●●●● ●● ●● ●●●●● ●● ● ●●●● ●●● ●● ●●●●●●● ●● ● ●●● ●● ●●●●●●●● ● ●●●● ●● ●●● ●●● ●●●●●●●●● ●●●●●● ● ●●● ●●●●● ● ●● ●●●● ●●●●● ●● ● ●●●● ●●● ●●●●●●●●●●●●● ● ●●●●●● ● ●●● ●● ●●●● ● ●● ●●●● ●● ●● ●● ● ●● ● ●● ●● ●●● ●●●● ●●● ●● ●●●●● ●●● ●● ● ●●● ●●●●●●●● ● ●● ● ●●●● ● ●● ● ●●● ●●● ●●●●●●● ●●● ●●● ● ●●●● ● ●●●● ●●● ● ● ● ●●●●● ● ●● ● ● ●●●●●●●●●●●●●●● ●●●●● ● ●●● ●●● ●● ● ●● ●●●● ●● ● ●●● ●●●● ● ●●●●● ● ●● ●● ●●● ● ● ●● ●● ●●● ●●●● ●●●● ●●●●●●● ●● ●●●●●●●●● ●●●● ● ●●● ● ●●●●● ● ●● ●● ● ● ● ●●●●● ● ●● ●●●● ●●●●●●●● ●● ●● ● ●● ● ●● ●●● ● ●●● ●●● ● ●●● ●●●●●●●● ●●●● ● ●●● ●●● ●●●●● ●●●●●●●● ●● ● ●● ●●●●●●●●●●● ●●● ●●●● ● ●●●●●● ●●● ●●●● ●●●●●●●●● ●● ●●●● ●●●● ●●● ● ●●● ●●● ●● ● ●● ●●● ● ●●● ●● ● ● ●●● ●● ●●●●●● ●●●●●●● ●●● ●●●● ● ●●●● ●● ● ●●●● ●●● ● ●●● ●● ●● ●● ●●●●● ●●●● ●●● ● ●●● ●●● ●● ●●●● ●●●●●●●●●●● ●● ● ● ●● ●● ●● ●●● ●● ●● ● ● ● ●●●●●●● ●● ●●●● ●●●●● ● ●● ●●● ●●●● ● ● ●● ●●●● ●●●●●●● ●●●●● ● ●●●●●●● ●● ●●●●●●●●● ●● ●●●●●●●●● ● ● ●● ●● ●● ●●●●●●●●● ●● ●● ●●●●● ● ●●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●●●●●● ●● ●●● ● ●●● ●●●●●● ●●●● ●●●●●●●●● ● ●●● ●●●●● ● ● ●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●● ●●● ●● ● ●● ●●●● ● ●●●● ● ●●●● ● ●●●● ●●● ●● ●●● ● ●● ●● ●● ●● ●●●●●●●●●●● ●●●●● ● ●● ● ● ● ●●●●●●●●●●●●● ● ●● ●● ●●● ●● ●● ●● ● ●●●●● ● ●● ●● ●●● ● ●●● ●●●● ●●● ● ●●● ●●●● ● ●● ●● ●●● ●● ● ●● ●●● ●●● ●●●●● ●●● ●● ●● ● ●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●● ● ●●● ●●●●●●●●●●● ●●● ●●● ● ●●● ●● ●●● ●●●●●● ● ●●●● ● ●●● ● ●● ● ●●●●●●●● ● ●● ●●●●●● ● ●● ● ●● ●●● ●●●● ●●● ●● ●●● ● ●●●●● ●●●● ●●● ●●●●● ●● ●● ● ●●● ●● ●●● ●●● ●● ● ●●●●●● ●● ●●● ●●●●●● ●● ●●●● ● ●● ●●● ●● ●●● ●●●●● ●● ●● ●●●● ● ●●●●●●●●●●●● ● ●●●●●●●● ●● ●●●●●● ●● ● ● ●● ● ●●●● ● ●●● ● ●● ●● ●● ●●●● ●● ●●●●●●● ●●● ●● ●●●●●● ●●● ●●●●●● ●● ● ●●● ● ●● ●● ●● ●● ●●●●●●●●● ●●● ●● ●●● ● ● ● ●● ●● ●●● ●●●●●●●●● ●● ● ●● ● ●●● ●●● ●●●● ●● ● ●●● ●●● ●●●●● ● ● ●● ●●●● ● ●● ● ●●● ●● ●●● ●●●● ● ● ●● ●●●● ●●● ● ●●● ●● ●●● ●●●● ● ●●●● ●● ●● ● ●● ●●● ● ●●●●●●●●●●● ● ●●● ● ●● ●●● ●●● ● ●● ● ●●●●● ●●● ●● ●●● ● ●● ●● ●●●● ● ●●●●●●●● ● ●● ● ● ●●● ●●● ●● ●●●● ●●● ●●●● ●● ●●●●● ●● ●●●● ●●●●● ●●● ● ● ● ●●●● ●●●●●●●● ●●● ●● ●●●● ●●●● ●● ● ●●●●●●●●●●●●●● ● ●●●●● ●●●●● ● ●● ●●●●●● ● ●●●●●●●● ●●● ●●● ●●●● ●● ●● ●●● ● ●●●● ● ●● ● ● ●● ●● ● ●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●● ● ●●●●●●●●●●●●●● ●●●● ●●● ● ●● ●●●● ●●● ●● ●● ●●●●●●●●●● ●●●●●●●● ●● ● ● ●● ●●●● ●● ●● ●● ● ● ●● ●●●●●●●●●● ● ●●● ●● ● ●● ●● ●●●● ●●● ●●●●●●●●●●●● ● ●● ●●● ● ●●●● ●●● ●● ●● ●●●● ●● ●●● ●●●●●●●●● ●●● ● ●●●● ● ●● ●● ●● ●●● ●●●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●● ●●●● ●● ●●●●● ●●● ● ●● ● ●●● ●● ●●● ●● ● ●●●●●● ●● ●●● ●● ●●● ●● ●●● ● ●●●●● ● ●●●● ● ●●● ●●●●●● ●●● ●●●●●●●●●● ● ●●●● ● ●● ●●● ●●●● ●●●● ● ●● ●● ● ●●●●● ●●●● ●● ●●● ● ●● ●● ●● ●● ● ●●●●● ●● ●●●●● ● ●● ● ●●● ●●●●●●●●●● ● ●●●●● ●●●●● ●● ● ●●● ●● ● ●● ● ● ●●●● ●●●●●● ● ●● ● ●● ● ●● ● ● ● ●●●● ●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●●● ●●●●● ●●●● ●●●● ●● ● ●●●●●● ●●● ●●●●● ● ●● ●●● ●● ●●●● ●● ●● ●●●●●●● ● ●●●●●● ● ●●● ●● ●●● ●●●● ●● ● ●●● ●●●●● ●●●● ●●● ●●●● ●● ●●● ●● ● ● ●●●●●●●●●●●●● ●● ● ● ●●●●● ●●●● ● ●●●● ●● ●● ●●●●● ●● ●● ●●● ● ●● ●●● ●●●●●●● ●● ● ●● ●● ●● ● ●● ●● ●● ●● ● ● ● ●● ● ●● ●● ●●●●●● ● ●●● ●●● ● ●●● ●● ●●● ● ● ●●●●●● ●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

2
4

6
8

10
12

start(cpneTrack)

da
ta

V
al

s(
cp

ne
T

ra
ck

)

9

3.2 Browsing the SNPs

We now aim to view some of the SNPs in the UCSC browser. Unlike the
microRNA target site example above, this track has quantitative information,
which requires special consideration for visualization.

3.2.1 Laying a WIG track

To view the SNP locations as a track in a genome browser, we first need to
upload the track to a fresh session.

> session <- browserSession()

> session <- layTrack(session, cpneTrack, name = "cpne")

Note that because cpneTrack contains data values and its features do not over-
lap, it is uploaded to the browser in the WIG format. One limitation of the
WIG format is that it is not possible to encode strand information. Thus, each
strand needs to have its own track, and rtracklayer does this automatically,
unless only one strand is represented in the track (as in this case). One could
pass “bed” to the format parameter of layTrack to prevent the split, but tracks
uploaded as BED are much more limited compared to WIG tracks in terms of
visualization options.

To form the labels for the WIG subtracks, “ p” is concatenated onto the plus
track and “ m” onto the minus track. Features with missing track information
are placed in a track named with the “ na” postfix. It is important to note that
the subtracks must be identified individually when, for example, downloading
the track or changing track visibility.

3.2.2 Plotting the SNP track

To plot the data values for the SNP’s in a track, we need to create a browserView.
We will view the first 5 SNPs in the track, which will be displayed in the “full”
mode.

> view <- browserView(session, genomeSegment(cpneTrack[1:5]),

+ full = "cpne")

The UCSC browser will plot the data values as bars. There are several options
available for tweaking the plot, as described in the help for the wigTrackLine
class. These need to be specified laying the track, so we will lay a new track
named “cpne2”. First, we will turn the autoScale option off, so that the bars
will be scaled globally, rather than locally to the current view. Then we could
turn on the yLineOnOff option to add horizontal line that could represent some
sort of cut-off. The position of the line is specified by yLineMark. We set it
arbitrarily to the 25% quantile.

> session <- layTrack(session, cpneTrack, name = "cpne2",

+ autoScale = FALSE, yLineOnOff = TRUE, yLineMark = quantile(dataVals(cpneTrack),

+ 0.25))

10

> view <- browserView(session, genomeSegment(cpneTrack[1:5]),

+ full = "cpne2")

4 Binding sites for NRSF

Another common type of genomic feature is transcription factor binding sites.
Here we will use the Biostrings package to search for matches to the binding
motif for NRSF, convert the result to a track, and display a portion of it in the
UCSC browser.

4.1 Creating the binding site track

We will use the Biostrings package to search human chromosome 1 for NRSF
binding sites. The binding sequence motif is assumed to be TCAGCACCATG-
GACAG, though in reality it is more variable. To perform the search, we
construct a PDict dictionary and run matchPDict on the positive strand of
chromosome 1.

> library(BSgenome.Hsapiens.UCSC.hg18)

> nrsfPD <- PDict("TCAGCACCATGGACAG")

> nrsfHits <- matchPDict(nrsfPD, Hsapiens[[1]])

> countIndex(nrsfHits)

[1] 2

We then convert the hits, stored as an MIndex object, to a trackSet instance,
via an IRanges object.

> nrsfTrack <- trackSet(unlist(nrsfHits), "chr1", "+")

4.2 Browsing the binding sites

Now that the NRSF binding sites are stored as a track, we can upload them
to the UCSC browser and view them. Below, load the track and we view the
region around the first hit in a single call to browseGenome.

> session <- browseGenome(nrsfTrack, segment = genomeSegment(nrsfTrack[1])/10)

We observe significant conservation across mammal species in the region of the
motif.

5 Conclusion

These case studies have demonstrated a few of the most important features of
rtracklayer. Please see the package documentation for more details.

The following is the session info that generated this vignette:

11

> sessionInfo()

R version 2.8.0 (2008-10-20)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] splines tools stats graphics grDevices utils
[7] datasets methods base

other attached packages:
[1] BSgenome.Hsapiens.UCSC.hg18_1.3.11
[2] BSgenome_1.10.3
[3] Biostrings_2.10.3
[4] IRanges_1.0.5
[5] rtracklayer_1.2.2
[6] RCurl_0.91-0
[7] org.Hs.eg.db_2.2.6
[8] microRNA_1.0.0
[9] Rlibstree_0.3-1
[10] matchprobes_1.14.0
[11] affy_1.20.0
[12] limma_2.16.3
[13] genefilter_1.22.0
[14] survival_2.34-1
[15] humanStemCell_0.2.0
[16] hgu133plus2.db_2.2.5
[17] RSQLite_0.7-1
[18] DBI_0.2-4
[19] AnnotationDbi_1.4.1
[20] Biobase_2.2.1

loaded via a namespace (and not attached):
[1] affyio_1.10.1 annotate_1.20.1 grid_2.8.0
[4] lattice_0.17-15 Matrix_0.999375-16 preprocessCore_1.4.0
[7] rJava_0.6-0 XML_1.98-1

12

