% -*- mode: noweb; noweb-default-code-mode: R-mode; -*- %\VignetteIndexEntry{HowTo plw} \documentclass[a4paper]{article} \title{HowTo plw} \author{Magnus {\AA}strand} \SweaveOpts{echo=FALSE} \usepackage{a4wide} \usepackage[round]{natbib} \begin{document} \maketitle \section{Introduction} This vignette describes how to use {\it plw}, an R implementation of the Probe level Locally moderated Weighted median-t (PLW) method \citep{Astrand:2007c} for finding differentially expressed genes. PLW uses an empirical Bayes model taking into account the dependency between variability and intensity-level. A global covariance matrix is also used allowing for differing variances between arrays as well as array-to-array correlations, and thus PLW performs weighted analysis. PLW is specially designed for Affymetrix type arrays (or other multiple-probe arrays). Instead of making inference on probe-set summaries, comparisons are made separately for each perfect-match probe and are then summarized into one score for the probe-set. The Locally Moderated Weighted-t (LMW) method, applying the model of PLW on probe-set summaries or data from single probe arrays, is also implemented in the {\it plw} package. See \cite{Astrand:2007c} for details on PLW and LMW, and \cite{Kristiansson:2005,Kristiansson:2006}, \cite{Sjogren:2007}, and \cite{Astrand:2007b} for details on weighted analysis for microarrays. PLW is demonstrated in Sections~\ref{sec:data} to \ref{sect:output}, and LMW in Section~\ref{sect:LMW}. \section{Data}\label{sec:data} %The R-package {\it plw} depends on a number of other R-packages from the Bioconductor\footnote{http://bioconductor.org/} project or the %the Comprehensive R Archive Network\footnote{http://www.r-project.org/} (CRAN). All packages must be installed to be able to run {\it plw} and %they are loaded automatically when loading {\it plw}: The R-package {\it plw} depends on the {\it affy} package, available from the Bioconductor\footnote{http://bioconductor.org/} project, which is loaded automatically when loading {\it plw}: <>= require(plw) @ The {\it affy} package contains functions for reading CEL-file data into an \verb*|AffyBatch| object using the function \verb*|ReadAffy|. It also contains functions for doing low-level analysis, such as background correction, normalization, and calculating expression indexes. For example, the \verb*|rma| function performs all three steps in one call and returns an \verb*|ExpressionSet| object holding RMA expression indexes. For further details on how to read CEL-file data into R use %<>= \begin{verbatim} > help(ReadAffy) \end{verbatim} In this vignette the PLW method is demonstrated using the \verb*|AffySpikeU95Subset| data set of 6 arrays and 1016 probe-sets. The data set was loaded using the \verb*|ReadAffy| function and is included in the {\it plw} package. \verb*|AffySpikeU95Subset| is a sub-set of the Affymetrix U95 Latin-Square spike-in data set of 59 arrays and 12626 probe-sets. For these data thera are 16 known differentially expressed genes/probe-sets \cite{Cope:2004}, of which all 16 are included in \verb*|AffySpikeU95Subset|. The data set in loaded using <>= data(AffySpikeU95Subset) <>= AffySpikeU95Subset @ \section{Running PLW} The \verb*|AffySpikeU95Subset| data set use data from groups a and b of the Affymetrix U95 Latin-Square spike-in data set. Here we show how to do a comparison of these two groups. The fifth letter of the CEL-file names holds the group assignment of each array which we can inspect using the \verb*|pData| function <>= pData(AffySpikeU95Subset) @ We define a design using the function \verb*|model.matrix|, and a contrast matrix for comparing groups a and b. <>= group<-factor(rep(letters[1:2],each=3)) design<-model.matrix(~group-1) contrast<-matrix(c(1,-1),1,2) <>= design contrast @ Now we are ready to use the \verb*|plw| function. <>= plwFit<-plw(AffySpikeU95Subset,design=design,contrast=contrast,epsilon=1e-05) <>= plwFit @ From the output we can see that steps 1 and 2 of the procedure used in \verb*|plw| required \Sexpr{plwFit$iter[1]} and \Sexpr{plwFit$iter[2]} iterations, respectively (see \cite{Astrand:2007c} for details of the procedure). The estimated value for the $m$-parameter is \Sexpr{round(plwFit$m,3)} and the degrees of freedom for the moderated t-statistics is \Sexpr{round(plwFit$dfT,1)}. \section{Analysing PLW output}\label{sect:output} %--------------------- DEGS -------------- There are three functions for displaying the ranking of probe-sets with respect to differential expression, \verb*|topRankSummary|, \verb*|plotSummaryT|, and \verb*|plotSummaryLog2FC|. All three show results for a given number of top ranking probe-sets (e.g. probe-set ranked 1-20), for a specific list of ranks (e.g. probe-set ranked 1,5, and 7), or for a specific list of probe-sets. For example we can display the result for the 16 spiked-in probsets. <>= topRankSummary(plwFit,genes=spikedProbesU95) @ We can also display results for probe-sets ranked 11 to 20, <>= topRankSummary(plwFit,genesOfRank=11:20) @ %\clearpage Alternatively ,we can display the result for the 20 top ranking probe-sets, <>= topRankSummary(plwFit,nGenes=20) @ The other two functions plot individual values for each perfect-match probe togheter with the median value. The \verb*|plotSummaryT| plots t-statistics, whereas \verb*|plotSummaryLog2FC| plots logged fold-change values, as shown in Figures~\ref{plotT} and \ref{plotFC}, respectively. \begin{figure}[htbp] \begin{center} <>= plotSummaryT(plwFit,genes=spikedProbesU95) @ \caption{T-statistics for spiked-in probsets.}\label{plotT} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} <>= plotSummaryLog2FC(plwFit,nGenes=15) @ \caption{Logged fold-change values for the 15 top ranking probe-sets.}\label{plotFC} \end{center} \end{figure} \clearpage %--------------------- model fit -------------- The plw function uses an empirical bayes model with an inverse-gamma prior for the unknown variances, where the scale parameter of the inverse-gamma prior is modeled as a function of mean intensity. With the \verb*|varHistPlot| function we can compare the fitted distribution for $\log(s^2)$ with the observed data, and with the \verb*|scaleParameterPlot| function we can look at the fitted curve for the scale parameter $\nu$ of the inverse-gamma prior. See Figures~\ref{varHistPlot} and \ref{scaleParameterPlot}, respectively. \begin{figure}[htbp] \begin{center} <>= varHistPlot(plwFit) @ \caption{Comparing the fitted distribution for $\log(s^2)$ with the observed data.}\label{varHistPlot} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} <>= scaleParameterPlot(plwFit) @ \caption{Fitted curve for the scale parameter $\nu$ of the inverse-gamma prior.}\label{scaleParameterPlot} \end{center} \end{figure} \clearpage %--------------------- LMW on -------------- \section{LMW on two-color microarray data}\label{sect:LMW} In \cite{Astrand:2007c} the LMW method is used on RMA expression indexes, and \verb|example(lmw)| shows how to use LMW on Affymetrix or other one-color array data. This section demonstrates how to use LMW on the ApoAI data-set \citep{Callow:2000}, comparing 8 ApoAI knockout mice with 8 normal mice using a set of $n=16$ two-color cDNA-arrays. Data was pre-processed as described in \citep{Callow:2000} and the analysis presented here is based on the 6068 genes (out of 6226) having no missing values. <>= source("http://www.math.chalmers.se/~astrandm/plw/GetApoAIdata.R") RG<-GetApoAIdata() require(limma) MA <- normalizeWithinArrays(RG) rownames(MA$M)<-MA$genes$Name ii<-apply(is.na(MA$M),1,any) MA$A<-MA$A[!ii,] MA$M<-MA$M[!ii,] @ Arrays 1 to 8 is the control group with mRNA from normal mice, whereas arrays 9 to 16 are from the knockout group. Thus, we specify a design and contrast matrix for the comparison of knock out mice with the control group of normal mice. <>= design <- cbind("Control-Ref"=1,"KO-Control"=MA$targets$Cy5=="ApoAI KO") contrast<-matrix(0:1,ncol=2) <>= design contrast @ The analysis using LMW is done using the mean intensity of the sum of logged green and red signal, respectively, to model the scale parameter of the inverse-gamma prior for error variances. Also, the spline-knots for the scale-parameter function are set using a set of sample quantiles (10, 30, 50, 70, and the 90\% quantile) of the mean intensity instead of the default knots computing using an internal function. <>= meanX<-apply(MA$A,1,mean) knots<-quantile(meanX,seq(0.1,0.9,by=0.2)) lmwFit<-lmw(MA$M,design=design,contrast=contrast,meanX=meanX,knots=knots) <>= lmwFit @ From the fitted model we can select the top 10 ranked genes from the analysis, <>= topRankSummary(lmwFit,nGenes=10) @ and inspect the model fit for the inverse-gamma prior together with the estimated scale-parameter curve, see Figures~\ref{varHistPlot2} and \ref{scaleParameterPlot2}, respectively. \begin{figure}[htbp] \begin{center} <>= varHistPlot(lmwFit) @ \caption{Comparing the fitted distribution for $\log(s^2)$ with the observed data from the ApoAI knockout experiment.}\label{varHistPlot2} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} <>= scaleParameterPlot(lmwFit) @ \caption{Fitted curve for the scale parameter $\nu$ of the inverse-gamma prior from the analysis of the ApoAI data-set.}\label{scaleParameterPlot2} \end{center} \end{figure} \clearpage %\bibliographystyle{plainnat} %\bibliography{/users/math/astrandm/Latex/bibfile} %\end{document} \begin{thebibliography}{7} \expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi \expandafter\ifx\csname url\endcsname\relax \def\url#1{{\tt #1}}\fi \bibitem[{\AA}strand et~al.(2007{\natexlab{a}}){\AA}strand, Mostad, and Rudemo]{Astrand:2007c} M.~{\AA}strand, P.~Mostad, and M~Rudemo. \newblock Empirical bayes models for multiple probe type arrays at the probe level. \newblock Technical report, Chalmers University of Technology and G\"oteborg University, Department of Mathematical Statistics, 2007{\natexlab{a}}. \newblock URL \url{{{http://www.math.chalmers.se/Math/Research/ Preprints/2007/27.pdf}}}. \bibitem[{\AA}strand et~al.(2007{\natexlab{b}}){\AA}strand, Mostad, and Rudemo]{Astrand:2007b} M.~{\AA}strand, P.~Mostad, and M~Rudemo. \newblock Improved covariance matrix estimators for weighted analysis of microarray data. \newblock {\em J. Comput. Biol.}, Accepted, appearing in number 10, 2007{\natexlab{b}}. \bibitem[Callow et~al.(2000)Callow, Dudoit, Gong, Speed, and Rubin]{Callow:2000} Matthew~J. Callow, Sandrine Dudoit, Elaine~L. Gong, Terence~P. Speed, and Edward~M. Rubin. \newblock {Microarray Expression Profiling Identifies Genes with Altered Expression in HDL-Deficient Mice}. \newblock {\em Genome Res.}, 10\penalty0 (12):\penalty0 2022--2029, 2000. \bibitem[Cope et~al.(2004)Cope, Irizarry, Jaffee, Wu, and Speed]{Cope:2004} Leslie~M. Cope, Rafael~A. Irizarry, Harris~A. Jaffee, Zhijin Wu, and Terence~P. Speed. \newblock {A benchmark for Affymetrix GeneChip expression measures}. \newblock {\em Bioinformatics}, 20\penalty0 (3):\penalty0 323--331, 2004. \bibitem[Kristiansson et~al.(2005)Kristiansson, Sj{\"o}gren, Rudemo, and Nerman]{Kristiansson:2005} Erik Kristiansson, Anders Sj{\"o}gren, Mats Rudemo, and Olle Nerman. \newblock Weighted analysis of paired microarray experiments. \newblock {\em Stat. Appl. Genet. Mol. Biol.}, 4\penalty0 (1):\penalty0 article 30, 2005. \bibitem[Kristiansson et~al.(2006)Kristiansson, Sj{\"o}gren, Rudemo, and Nerman]{Kristiansson:2006} Erik Kristiansson, Anders Sj{\"o}gren, Mats Rudemo, and Olle Nerman. \newblock Quality optimised analysis of general paired microarray experiments. \newblock {\em Stat. Appl. Genet. Mol. Biol.}, 5\penalty0 (1):\penalty0 article 10, 2006. \bibitem[Sj{\"o}gren et~al.(2007)Sj{\"o}gren, Kristiansson, Rudemo, and Nerman]{Sjogren:2007} Anders Sj{\"o}gren, Erik Kristiansson, Mats Rudemo, and Olle Nerman. \newblock Weighted analysis of general microarray experiments. \newblock {\em BMC Bioinformatics}, 8\penalty0 (1):\penalty0 article 387, 2007. \end{thebibliography} \end{document}