
Codelink

Diego Diez

October 22, 2008

1 Introduction

Codelink is a platform for the analysis of gene expression on biological sam-
ples property of Applied Microarrays, Inc. (previously was GE Healthcare and
Amersham). The hybridization reagents are still supplied by GE Healthcare.

The system uses 30 base long oligonucleotide probes for expression testing.
There is a proprietary software for reading scanned images, doing spot inten-
sity quantization and some diagnostics. The software assigns quality flags (see
Table 1) to each spot on the basis of a signal to noise ratio (SNR) computation
(Eq: 1) and other morphological characteristics as irregular shape of the spots,
saturation of the signal or manufacturer spots removed. By default, the software
performs background correction (subtract) followed by median normalization.
The results can be exported in several formats as XML, Excel, plain text, etc.
This library allows to read Codelink plain text exported data into R [3] for the
analysis of gene expression with any of the available tools in R+Bioconductor[1].

For storing the available data, a new class Codelink was designed. The now
defunt exprsSet in the Biobase package was not a convenient store class for
Codelink data, because it didn’t allow probes with duplicated names, as those
names are stored as rownames in the expression matrix.

Currently there is experimental support for a ExpressionSet derived class
that can accomodate duplicated probe names in an AnnotatedDataFrame whereas
the feature ids would be used for row names when available.

Flag Description
G Good signal (SNR >= 1)
L Limit signal (SNR < 1)
I Irregular shape
S Saturated signal
M MSR spot
C Background contaminated
X User excluded spots

Table 1: Quality Flag description. SNR: Signal to Noise Ratio.

1

SNR =
Smean

(Bmedian + 1.5 ∗Bstdev)
(1)

Probe type Description
DISCOVERY Gene expression testing probes

POSITIVE Positive control probes
NEGATIVE Negative control probes
FIDUCIAL Grid alignment probes

OTHER Other controls and housekeeping gene probes

Table 2: Probe types for Codelink arrays.

2 Reading data

Currently only data exported as plain text from Codelink software is supported.
Unfortunately the Codelink exported text format can have arbitrary columns
and header fields so depending of what you have exported you can read it or
not. The suggestion is that you put on the files everything you can, including
Spot mean and Bkgd median values so you can do background correction and
normalization in R. In addition, Bkgd stdev is needed to compute the SNR. If
you put Raw intensity or Normalized intensity columns then you can also read
it directly and avoid background correction and/or normalization but this is not
recommended. To read some Codelink files you do:

NOT RUN

> library(codelink)

> foo <- readCodelink()

> summaryFlag(foo) # will show a summary of flag values.

NOT RUN

This suppose that your files have the extension “TXT” (uppercase) and that
they are in your working directory. If this is not the case you can specify the
files to be read with the ’file’ argument. The function readCodelink returns
and object of Codelink similar to that:

> library(codelink)

> data(codelink.example)

> codelink.example

2

An object of class "Codelink"
$product
[1] "UniSet Human 20K I"

$sample
[1] "Sample 1" "Sample 2"

$file
[1] "T001-2006-12-25_Sample 1.TXT" "T002-2006-12-25_Sample 2.TXT"

$name
[1] "NM_012429.1_PROBE1" "NM_003980.2_PROBE1" "AY044449_PROBE1"
[4] "NM_005015.1_PROBE1" "AB037823_PROBE1"
20464 more elements ...

$type
[1] "DISCOVERY" "DISCOVERY" "DISCOVERY" "DISCOVERY" "DISCOVERY"
20464 more elements ...

$flag
1 2

1 "L" "L"
2 "L" "L"
3 "G" "L"
4 "G" "M"
5 "G" "G"
20464 more rows ...

$method
$background
[1] "NONE"

$normalization
[1] "NONE"

$merge
[1] "NONE"

$log
[1] FALSE

$snr
1 2

1 0.7920656 0.7856675
2 0.8160216 0.7862189

3

3 1.0744066 0.9331916
4 3.8865153 NA
5 4.6647164 1.7993536
20464 more rows ...

$logical
row col

1 1 9
2 1 10
3 1 11
4 1 12
5 1 13
20464 more rows ...

$Smean
1 2

1 49.0588 46.7304
2 48.6395 45.8333
3 65.0781 52.4917
4 243.3116 NA
5 267.6458 102.0803
20464 more rows ...

$Bmedian
1 2

1 43 42
2 42 42
3 42 40
4 44 NA
5 42 42
20464 more rows ...

The Codelink-class is basically a list that stores information in several
slots (see Table 3). The chip type (product slot) is read from the PRODUCT
field if found in the header of Codelink files. If it is not found then a warning
message is shown and product slot is set to ”Unknown”. If the product is not
the same in all the files the reading is canceled with an error message.

By default, all spots flagged with M, I, and S flags are set to NA. This can be
controlled with the flag argument of readCodelink. The flag argument is a list
that can contain a valid flag identifier and a value for that flag. For example,
if you want to set all M flagged spots to 0.01 and let other spot untouched you
do:

NOT RUN

> foo <- readCodelink(flag = list(M = 0.01))

4

Slot Description
product Chip name description
sample Sample names vector

file File names vector
name Probe names vector
type Probe types vector

method Methods applied to data
method$background Background correction method used

method$normalization Normalization method used
method$merge Merge method used

method$log Logical: If data is in log scale
flag Quality flag matrix

Smean Mean signal intensity matrix
Bmedian Median background intensity matrix

Ri Raw intensity matrix
Ni Normalized intensity matrix

snr Signal to Noise Ratio matrix
cv Coefficient of Variation matrix

Table 3: Description of Codelink object slots.

NOT RUN

It is possible to find probes wit more that one flag assigned, i.e. CL for a
probe labeled as C and L, CLI for a probe labeled as C, L and I, and so on. A
a regular expression is used to find flag types in an attempt to to manage all
the possible situations. When two user modified flags fall in the same probe the
more restricting (NA being the most) is assigned.

3 Background correction

If you have Spot mean values Bkgd median values the you can apply one of the
several background correction methos interfaced. This is done by the function
bkgdCorrect. To see the different options look at ?bkgdCorrect. For instance,
if you want to apply half method you do:

> foo <- bkgdCorrect(foo, method = "half")

The default method used is half and is based in the same method applied in
the limma [4] package to two channel microarrays. In this method, the median
background intensity (Bmedian) is subtracted from mean spot intensity (Smean)
and any value smaller that 0.5 is shift to 0.5 to ensure no negative numbers are

5

obtained that would prevent to transform the data into log scale. Other available
methods are none that let the spot intensities untouched, subtract that is analog
to the default method used in the Codelink software and normexp and interface
to the method available in the limma package.

4 Normalization

Normalization of the background corrected intensities is done by the wrapper
function normalize. The default method is quantile normalization that in fact
call normalizeQuantiles() from limma package (allowing for NAs). There is
also the possibility to use a modified version of CyclicLoess from affy [2] package
that allow using weights and missing values. Finally, the median normalization
allows to normalize using a method analog to the default method in the Codelink
software. To normalize you usually do:

> foo <- normalize(foo, method = "quantiles")

By default, normalize return log2 intensity values. This could be controlled
setting the parameter log.it to FALSE.

5 Plotting

There are some diagnostic plots available for the Codelink object. These are
functions for producing MA plots (plotMA), scatterplots (plotCorrelation)
and density plots (plotDensities). All functions use the available intensity
value (i.e. Smean, Ri or Ni) to make the plot.

The functions plotMA and plotCorrelation can highlight points based on
the Spot Type, which is the default behavior or using the SNR values. The mode
is controlled with argument label. plotCorrelation requires arguments array1
and array2 to be set in order to select which arrays are going to be plotted. For
plotMA if only array1 is specified, the values are plotted againts a pseudoarray
constructed with the mean of the probe intensities along all available arrays. M
and A values are computed following equations 2 and 3.

> plotMA(codelink.example)

6

6 8 10 12 14

−
1

0
1

2
3

4

A

M

●● ●
●●

●
●

●
●

●

●
●

●

● ●

●
●●

●● ● ●●
● ●

●

●

●
●

●

● ●

●

●
● ●

●

●
●

●

●
●

●●
●

● ●●
● ●

● ●●

●● ●
●●

●
●

●
●

●

●
●

●
● ●

● ●
●

●
● ●

●●

●
●

●
●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

● ●

●
●● ● ●●

●
●

● ●●

●●●●●●●●●●●
●

●●
●●●●●●●●●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●● ●

●
●●●
●●●●●●●●●●
●●●●●●

●
●●

●●
●●●●●●●

●●●●
●
●●●●●●
●
●●●

●●●●●●●●●●●●●●
●●●●●●●
●●

●
●

●●●●
●
●●

●

●●●●●
●●●●●
●●●
●

●●●●●●

●
●●
●●●●
●
●
●●●●
●●●●●●●●●●
●●●●

●

●
●●●●●●● ●●

●

●●
●●●
●
●●●●●●

●●●●●
●
●●●●

●
●●●●●●●●●●●●

●●●
●
●● ●●●●●●●● ●

●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●
●
●

●
●●●●●●●●●●●●●
●●●●●

●● ●● ●●
●
●
●

● ●
●●●●●

●●●●
●

● ●
●●

●
●●
●

●●●●●●

●
●●

●
● ●●

●●●●●●●●●
●

●●●●
●●

●

●
●●●

● ●

●

●●●
●●●

Mean Array vs. Sample 1

DISCOVERY
POSITIVE
NEGATIVE
OTHER
FIDUCIAL

M = Array2 −Array1 (2)

A =
Array2 + Array1

2
(3)

The function plotDensities plot the density of intensity values of all arrays.
It can plot only a subset of arrays if the subset argument is supplied.

> plotDensities(codelink.example)

7

6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

N = 20210 Bandwidth = 0.1323

D
en

si
ty

Density Plot of Smean

Sample 1
Sample 2

When Logical row and Logical col columns are exported into they are stored
into the logical slot. This information stores the physical location of each probe
in the array, and can be used to plot pseudo images of the array intensities. To
plot a pseudo image you should use:

> imageCodelink(foo)

> imageCodelink(foo, what = "snr")

It is possible to plot the background intensities (default), the spot mean,
raw and normalized intensities and the SNR values. This images are useful to
identify spatial artifact that may be affecting the analysis.

6 Miscellaneous

There are also some miscellaneous functions used in some analysis that could
be useful for someone.

6.1 Export to file

The function writeCodelink exports a Codelink object to a file. The file will
contain probe intensities and, if specified flag = TRUE, probe quality flags.

8

6.2 Using weights

The createWeights function creates a matrix of weights based on probe type
labels to be used, for example, when fitting a linear model with limma [4].

> w <- createWeights(codelink.example, type = list(FIDUCIAL = 0.01,

+ NEGATIVE = 0.1))

> w[1:10,]

[,1] [,2]
[1,] 1 1
[2,] 1 1
[3,] 1 1
[4,] 1 1
[5,] 1 1
[6,] 1 1
[7,] 1 1
[8,] 1 1
[9,] 1 1
[10,] 1 1

6.3 Merging arrays

In case you want to merge array intensities the mergeArray function help on
this task. It computes the mean of Ni values on arrays of the same class.
The grouping is done by means of the class argument (numerical vector of
classes). New sample names should be assigned to the sample slot using the
names argument. The function also returns the coefficient of variation in the
cv slot. The distribution of coefficients of variations can be checked with the
function plotCV.

> foo <- mergeArray(foo, class = c(1, 1, 2, 2),

+ names = c("A", "B"))

> plotCV(foo)

7 Problems reading data

Some updated version of the Codelink software changed the order in which
probes are printed in the exported text files. That makes files from these
different software version impossible to be analyzed together. The function
readCodelink have a new argument check TRUE by default, that check the
Probe name columns to see if they have the same order in all the arrays at the
cost is a little extra loading time. This behaviour can be turn off by setting

9

check to FALSE. If an ordering problem is found, a warning message is print
but the reading of data is not stopped, allowing the visual examination of the
data. In this case, the best option is to export the old files again using the
updated version of the software. If this is impossible for whatever reason, the
codelink package can try to fix the order of the files.

To the aim, a new argument fix = TRUE can be passed to readCodelink.
The method will try to order the probes using the Feature id column, which is
a combination of Logical row and Logical col and for this, a unique identifier
of each probe. This is the optimal fix, and the new data should be perfectly
ordered. If that column is missing, the it will try to order the data using the
Probe name column. This is a sub-optimal solution because as the fiducial,
control and some discovery probes have duplicated Probe name, they may be
end messed up. In this case, the best solution again, is to try to export again
the data with the updated version of the software.

> foo <- readCodelink(fix = TRUE)

8 Future improvements

As the new classes in the Biobase package (eSet and ExpressionSet) allow
more flexible data structures, a reimplementation of the Codelink-class based
on ExpressionSet-class will be the next major feature added to this pack-
age. This will allow a better integration with other tools available through the
Bioconductor project.

Right now, there is some experimental implementation of the new codebase.
You need to use the wrapper function readCodelink2.

> foo <- readCodelink2()

References

[1] Robert C Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bolstad,
Marcel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao
Ge, Jeff Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Ia-
cus, Rafael Irizarry, Friedrich Leisch Cheng Li, Martin Maechler, Anthony J.
Rossini, Gunther Sawitzki, Colin Smith, Gordon Smyth, Luke Tierney, Jean
Y. H. Yang, and Jianhua Zhang. Bioconductor: Open software development
for computational biology and bioinformatics. Genome Biology, 5:R80, 2004.

[2] Rafael A. Irizarry, Laurent Gautier, Benjamin Milo Bolstad, ,
Crispin Miller with contributions from Magnus Astrand <Mag-
nus.Astrand@astrazeneca.com>, Leslie M. Cope, Robert Gentleman,

10

Jeff Gentry, Conrad Halling, Wolfgang Huber, James MacDonald, Benjamin
I. P. Rubinstein, Christopher Workman, and John Zhang. affy: Methods
for Affymetrix Oligonucleotide Arrays, 2005. R package version 1.8.1.

[3] R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2005.
ISBN 3-900051-07-0.

[4] Gordon K Smyth. Limma: linear models for microarray data, pages 397–420.
Springer, New York, 2005.

11

