
Quality assessment with arrayQualityMetrics

Audrey Kauffmann, Wolfgang Huber

November 7, 2008

Contents

1 Usage 2

2 Output 2

3 Minimal use 2
3.1 Example on Affymetrix data . 2
3.2 Example with one colour arrays . 3
3.3 Example with two colours arrays . 3
3.4 Other type of objects . 3

4 Playing with the arguments 4
4.1 Factor of interest . 4
4.2 Splitting the plots . 4

5 Extended use 4
5.1 Spatial layout of the array . 5
5.2 Mapping of the reporters . 5
5.3 GC content of the reporters . 5
5.4 Factor of interest . 5
5.5 Report production . 6

1

Introduction

The goal of this vignette is to show how to obtain a quality assessment report by the use of
arrayQualityMetrics. The first step of the analysis of microarray is to assess the quality of the
experiment. You should also assess the quality after preprocessing your data. Each type of
microarray data (one colour, two colour, Affymetrix, Illumina...) is represented by a class of
object in Bioconductor. However, the arrayQualityMetrics function is used the same way on any
kind of data. arrayQualityMetrics produces a HTML report as an output. The more information
is in the input object, the more complete is the report produced.

1 Usage

The call of the function is the same for the various classes of objects but it depends on the
specificities that you want in the report. The function arrayQualityMetrics is called with the
following arguments:

• expressionset : is an object of class ExpressionSet, AffyBatch, NChannelSet, RGList or
BeadLevelList.

• outdir : is the directory in which the result files are created. The default is the current
directory.

• force: if TRUE, if outdir already exists, it will be overwritten. The default is FALSE.

• do.logtransform: if TRUE, the data are log transformed before the analysis. The default is
FALSE.

• split.plots: if the number of studied arrays is more than 50 it is advised to define a number
of experiments to represent on the density plots. The default is FALSE, meaning that all
the density curves are represented on the same plot.

• intgroup: is the name of the column in the phenoData that contains the information about
a covariate of interest to be shown as a side bar on the heatmap. The default name of this
column is ”Covariate”.

• grouprep: define if yes or no (TRUE or FALSE) you want the boxplots and density plots to
be coloured according to the groups set in ’intgroup’. The default is FALSE.

2 Output

A report named QMreport.html is produced in the subdirectory given as ’outdir’. It contains text
illustrated by pictures. Each of the picture is linked to corresponding .pdf files in order to provide
high quality images for publication. In the case of AffyBatch input, some Affymetrix specific plots
are added to the standard report. However the way of calling the function remains the same.
As explained in the Section 5, other plots can be added to the standard report if some specific
columns are present in the input object.

3 Minimal use

3.1 Example on Affymetrix data

If you are working with Affymetrix chips, an AffyBatch object is the most appropriate to import
your raw data in Bioconductor. To learn how to produce an AffyBatch from your data, please
read the documentation from the affy package. We can use the MLL.A AffyBatch provided in the
data package ALLMLL as an example to create a quality report. MLL.A has been obtained from
the CEL files, using the ReadAffy function from the affy package.

2

> library("ALLMLL")

> data("MLL.A")

Now that the data are loaded, we can call arrayQualityMetrics.

> library("arrayQualityMetrics")

> arrayQualityMetrics(expressionset = MLL.A,

+ outdir = "MLL",

+ force = TRUE,

+ do.logtransform = TRUE)

Here is the simplest way of calling the function. We give a name to the directory (’outdir’) and
we overwrite the possibly existing files of this directory (’force’). Finally, we set ’do.logtransform’
to log transform the intensities.

3.2 Example with one colour arrays

If you are working on one colour non Affymetrix chips, you can load your data in Bioconductor
as an ExpressionSet object. Please see the documentation of the Biobase package to do so. The
ExpressionSet is made to contain one colour data set. Here, as an example, we can simulate this
by using a preprocessed object from MLL.A which contains one value for each gene.

> rMLL = rma(MLL.A)

Background correcting
Normalizing
Calculating Expression

We can then call the arrayQualityMetrics function the standard way:

> arrayQualityMetrics(expressionset = rMLL,

+ outdir = "rMLL",

+ force = TRUE)

We do not need to set ’do.logtransform’ as the data are already log transformed.

3.3 Example with two colours arrays

If you are working on two colour chips, you can create a NChannelSet to contain your data. The
documentation of the Biobase package gives instruction to build a NChannelSet. As an instance of
a NChannelSet, we can use the CCl4 data package and normalize it using the variance stabilization
method available in the package vsn.

> library("CCl4")

> data("CCl4")

> nCCl4 = justvsn(CCl4, subsample=2000)

> arrayQualityMetrics(expressionset = nCCl4,

+ outdir = "CCl4norm",

+ force = TRUE)

3.4 Other type of objects

Through the previous examples, you have seen that arrayQualityMetrics is used the same way
on different types of object. If you have Illumina bead arrays, you can build a BeadLevelList,
which is explained in the beadarray package, and run arrayQualityMetrics. It is also possible to
use arrayQualityMetrics on RGList, MAList, marrayRaw and marrayNorm. More information
about the RGList and MAList classes is given in the package limma. The objects marrayRaw and
marrayNorm are explained in the vignette of the package marray.

3

4 Playing with the arguments

4.1 Factor of interest

A useful feature of arrayQualityMetrics is the possibility to show the results by taking into account
a factor of interest, thanks to ’intgroup’ and ’grouprep’. It does not change the way of computing
the quality metrics. By setting ’intgroup’ a bar on the side of the heatmap with colours representing
factors is added. With ’grouprep’ equals to TRUE it changes the colours of the boxplots and
density plots and adds a bar on the side of the heatmap with colours representing factors. We can
use the rMLL example again.

> pData(rMLL)$fakefac = rep(letters[1:4],5)

Here we have created fake phenoData (sample annotation) because we do not know anything
about the samples, but this can be your factor of interest (time, mutant, concentration, clinical
state etc...). Then we can set the ’intgroup’ argument as the name of the column containing the
information we want to show on the report.

> arrayQualityMetrics(expressionset = rMLL,

+ outdir = "rMLL1fac",

+ force = TRUE,

+ intgroup = "fakefac",

+ grouprep = TRUE)

With ’grouprep’ being TRUE, we have the colour side bar on the heatmap and the boxplots and
density plots that are coloured according to the factor of interest (here, a,b,c,d).
If we have several factors of interest, we can set ’intgroup’ as a vector of column names.

> pData(rMLL)$fakefac2 = c(rep(LETTERS[1],10), rep(LETTERS[2],10))

> arrayQualityMetrics(expressionset = rMLL,

+ outdir = "rMLL2fac",

+ force = TRUE,

+ intgroup = c("fakefac","fakefac2"),

+ grouprep = TRUE)

In that case, there will be two colour side bars on the heatmap. The argument ’grouprep’ being
TRUE, the colours used on the boxplot and density plots are the ones corresponding to the first
factor of interest given in the vector ’intgroup’.

4.2 Splitting the plots

If we have a large number of arrays, the density plots are not readable. We thus can set the
argument ’split.plots’ to a number of density curves to be shown on one plot.

> arrayQualityMetrics(expressionset = rMLL,

+ outdir = "rMLLsp",

+ force = TRUE,

+ split.plots = 10)

This argument can be set together with ’intgroup’ and ’grouprep’.

5 Extended use

Some of the quality metrics provided by the package are performed using specific information
about the features of the arrays. To have more quality metrics in the report, you can add the
needed information in your input object. We can use the nCCl4 example again.

4

5.1 Spatial layout of the array

To plot the spatial distributions of the intensities of the arrays arrayQualityMetrics needs the
coordinates of the spots on the chip. In the case of AffyBatch or BeadLevelList, this is auto-
matically done without further information needed. For the other types of objects, two columns
corresponding to the row and column numbers of the features are required in the featureData.
These columns should be named ”X” for rows and ”Y” for columns. If the arrays are split into
blocks, then the function addXYfromGAL should be executed prior to arrayQualityMetrics to convert
the rows and columns of the blocks in absolute ”X” and ”Y” on the array. In the example of the
data set CCl4, the coordinates of the spots are in the columns named ”Row” and ”Column” of the
featureData (the slot of the object containing the annotation of the probes). We thus need to copy
this information in columns named ”X” and ”Y” respectively, so that these coordinates are taken
into account and the spatial distribution of the intensities can be drawn.

> featureData(nCCl4)$X = featureData(nCCl4)$Row

> featureData(nCCl4)$Y = featureData(nCCl4)$Column

5.2 Mapping of the reporters

The report can also include a study of the effect of the target mapping of the reporters. Thus a
featureData column named ”hasTarget” should include logical TRUE if the reporter matches for
a coding mRNA and FALSE if not. In the CCl4 case, probe names can be RefSeq identifiers.
Thus the ones starting with ”NM” are the one corresponding to coding mRNA. ”hasTarget” can
be derived from this, the following way:

> featureData(nCCl4)$hasTarget = (regexpr("^NM", featureData(nCCl4)$Name) > 0)

This command line produces TRUE if the probe name starts with ”NM”and FALSE if it does not.

5.3 GC content of the reporters

If the GC content of the reporters is known, then it is possible to include it as percentages in the
featureData of the NChannelSet under the column name ”GC”. Then a study of the GC content
effect on intensities of the arrays can be performed. In the CCl4 example we do not have this
information. However, the process would be very similar to what is done with the ”hasTarget”
column.

5.4 Factor of interest

As seen before, we can make use of a factor of interest. In the case of the CCl4 dataset, the RNA
hybridized to the arrays can be of good, medium or poor quality accordingly to its RIN number
(see CCl4 vignette). We can read the sample information of CCl4, there is 4 RIN values possible
2.5, 5, 9 and 9.7, with 9 always corresponding to the reference. As the RIN number is given per
dye, we need to create a variable which will be ”Good” when one of the two dyes RIN is 9.7,
”Medium” when it is 5 and ”Poor” when it is 2.5. In this example, we will copy this variable in
a column ”RNAintegrity” of the phenoData. We will set the argument ’intgroup’ with this name
when calling the function arrayQualityMetrics.

> datapath = system.file("extdata", package="CCl4")

> p = read.AnnotatedDataFrame("samplesInfo.txt", path=datapath)

> cond = paste(p$RIN.Cy3,p$RIN.Cy5,sep="/")

> poor = grep(cond,pattern="2.5")

> medium = grep(cond,pattern="^5/|/5")

> good = grep(cond,pattern="9.7")

> cov = rep(0, length = nrow(p))

5

> cov[good] = "Good"

> cov[medium] = "Medium"

> cov[poor] = "Poor"

> phenoData(nCCl4)$RNAintegrity = cov

5.5 Report production

> arrayQualityMetrics(expressionset = nCCl4,

+ outdir = "CCl4complete",

+ force = TRUE,

+ intgroup = "RNAintegrity",

+ grouprep = TRUE)

A report named QMreport.html is produced in the subdirectory CCl4. As ’grouprep’ is TRUE
and ’intgroup’ is ”RNAintegrity”, the boxplot and density plots are represented with colours de-
pending on the ”RNAintegrity” value and a side bar is drawn next to the heatmap and coloured
according to this factor as well.

Session Info

> toLatex(sessionInfo())

• R version 2.8.0 (2008-10-20), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.ISO-8859-1;LC_NUMERIC=C;LC_TIME=en_US.ISO-8859-1;LC_COLLATE=en_US.ISO-8859-1;LC_MONETARY=C;LC_MESSAGES=en_US.ISO-8859-1;LC_PAPER=en_US.ISO-8859-1;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.ISO-8859-1;LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, tools, utils

• Other packages: affy 1.17.3, affydata 1.11.3, affyio 1.5.11, affyPLM 1.13.6, ALLMLL 1.2.2,
annotate 1.18.0, AnnotationDbi 1.3.12, arrayQualityMetrics 1.8.1, beadarray 1.9.0, Biobase 2.0.1,
CCl4 1.0.7, DBI 0.2-4, gcrma 2.12.1, genefilter 1.20.0, geneplotter 1.18.0, hgu133acdf 1.17.0,
lattice 0.17-15, latticeExtra 0.2-2, limma 2.14.5, marray 1.18.0, matchprobes 1.12.0, prepro-
cessCore 0.99.12, RColorBrewer 1.0-1, RSQLite 0.6-8, simpleaffy 2.13.01, survival 2.34-1,
vsn 3.6.0, xtable 1.5-2

• Loaded via a namespace (and not attached): KernSmooth 2.22-22

6

	Usage
	Output
	Minimal use
	Example on Affymetrix data
	Example with one colour arrays
	Example with two colours arrays
	Other type of objects

	Playing with the arguments
	Factor of interest
	Splitting the plots

	Extended use
	Spatial layout of the array
	Mapping of the reporters
	GC content of the reporters
	Factor of interest
	Report production

