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1 Introduction

Chromosomal DNA is characterized by variation between individuals at the level of entire chromosomes
(e.g. aneuploidy in which the chromosome copy number is altered), segmental changes (including
insertions, deletions, inversions, and translocations), and changes to small genomic regions (including
single nucleotide polymorphisms). A variety of alterations that occur in chromosomal DNA, many of
which can be detected using high density single nucleotide polymorphism (SNP) microarrays, are linked
to normal variation as well as disease and therefore of particular interest. These include changes in copy
number (deletions and duplications) and genotype (e.g. the occurrence of regions of homozygosity).
Hidden Markov models (HMM) are particularly useful for detecting such abnormalities, modeling the
spatial dependence between neighboring SNPs. Here, we extend previous approaches that utilize HMM
frameworks for inference in high throughput SNP arrays by integrating copy number, genotype calls,
and the corresponding measures of uncertainty when available. Using simulated and real data, we
demonstrate how confidence scores control smoothing in a probabilistic framework. The goal of this
vignette is to provide a simple interface for fitting HMMs and plotting functions to help visualize the
predicted states alongside the experimental data.

2 Simple Usage

2.1 Locus-level estimates of copy number

To do: describe how to obtain locus-level estimates of copy number.

2.2 Hidden Markov model to smooth locus-level estimates

> library(VanillaICE)

> data(chromosome1)

> annotation(chromosome1)

[1] "pd.mapping50k.hind240,pd.mapping50k.xba240"

> chromosome1

oligoSnpSet (storageMode: lockedEnvironment)
assayData: 9165 features, 1 samples
element names: calls, callsConfidence, cnConfidence, copyNumber

experimentData: use 'experimentData(object)'
Annotation: pd.mapping50k.hind240,pd.mapping50k.xba240
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phenoData
An object of class "AnnotatedDataFrame"
sampleNames: NA06993
varLabels and varMetadata description:
family: trio variable
upd: uniparental isodisomy indicator

featureData
An object of class "AnnotatedDataFrame"
rowNames: SNP_A-1677174, SNP_A-1718890, ..., SNP_A-1677548 (9165 total)
varLabels and varMetadata description:
dbsnp_rs_id: dbsnp_rs_id
chromosome: chrom
...: ...
enzyme: enzyme
(8 total)

Annotation [1] "pd.mapping50k.hind240,pd.mapping50k.xba240"

A visualization of the data:

> gp <- plot(chromosome1)

> show(gp)

The HMM for total copy number assumes that the copy number estimates, conditional on the hidden
state, are approximately Gaussian. Fitting a HMM requires the following components:

� the hidden states

� the emission probabilities

� transition probabilities

Hidden states For the hidden Markov model, it is important that the SNPs (within a chromosome)
are ordered by physical position.

> ann <- fData(chromosome1)[, c("chromosome", "position")]

> ann[, "chromosome"] <- chromosome2integer(ann[, "chromosome"])

> chromosome1 <- chromosome1[order(ann[, "chromosome"],

+ ann[, "position"]), ]

Next we specify the hidden states and the corresponding number for each state.

> states <- c("homozygousDeletion", "hemizygousDeletion",

+ "normal", "LOH", "3copyAmp", "4copyAmp")

> mu <- c(0.05, 1, 2, 2, 3, 4)

SNP-specific estimates of the uncertainty of the total copy number will be available from methods in
Section 2.1 shortly. Below, we simply obtain a robust estimate of the copy number standard deviation
across SNPs and use this estimate for all of the SNPs. Because we the log-transformed copy number
estimates are more nearly Gaussian, we calculate a robust estimate of the standard deviation on the
log scale, and use this estimate for all of the SNPs. This section will be updated.

> library(genefilter)

> CT <- copyNumber(chromosome1)

> sample.sd <- matrix(rowSds(t(log2(CT))), nrow(CT), ncol(CT))
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Emission probabilities Locus-level estimates of copy number, when suitably transformed, are as-
sumed to be approximately Gaussian-distributed. We may obtain emission probabilities as follows:

> logCT <- array(log2(CT), dim = c(nrow(CT), ncol(CT),

+ length(states)))

> dimnames(logCT) <- list(rownames(CT), colnames(CT),

+ states)

> logMu <- aperm(array(log2(mu), dim = c(length(states),

+ ncol(CT), nrow(CT))))

> logSd <- aperm(array(sample.sd, dim = c(length(states),

+ ncol(CT), nrow(CT))))

> dimnames(logMu) <- dimnames(logSd) <- dimnames(logCT)

> k <- which(!is.na(as.vector(logCT)))

> emission.logCT <- dnorm(as.vector(logCT)[k], as.vector(logMu)[k],

+ as.vector(logSd)[k])

> emission.logCT <- array(emission.logCT, dim = dim(logCT))

> logemission.logCT <- log(emission.logCT)

Alternatively, one may use the function copynumberEmission (does nearly the same as above, but
with a few additional checks).

> logemission.logCT2 <- copynumberEmission(copynumber = CT,

+ states = states, mu = mu, uncertainty = sample.sd,

+ takeLog = TRUE, verbose = TRUE)

> dimnames(logemission.logCT) <- dimnames(logemission.logCT2)

> identical(logemission.logCT, logemission.logCT2)

[1] TRUE

> rm(logemission.logCT2)

> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 620520 33.2 1073225 57.4 818163 43.7
Vcells 1067502 8.2 1949258 14.9 1773191 13.6

Adding a small positive value to the log emission probabilities prevents breaks in the predicted states
due to extreme values. This step is less important if SNP-specific estimates of uncertainty are available.

> logemission.logCT[logemission.logCT < -10] <- -10

Uncertainty estimates for the genotype calls can also be integrated. The genotype calls must be
represented as integers (1 = AA, 2 = AB, 3 = BB, 4 = missing). We recommend using CRLMM to
genotype – CRLMM provides genotypes for all SNPs on the array (no missing values) and confidence
estimates for the call that takes into consideration the signal to noise ratio of the sample as well as a SNP-
specific estimate of the uncertainty. Di-allelic genotype calls from CRLMM are useful, though incorrect
for CNV. In particular, di-allelic genotype calls can help pinpoint hemizygous deletions (genotype calls
of AA or BB correspond to ’A’ and ’B’) and copy-neutral regions of loss of heterozygosity (LOH). For
the HMM, one must specify the probability of a homozygous genotype call (probHomCall) for each
of the hidden states. The goal, then, is to have genotype emission probabilities that are informative
for distinguishing the normal state versus hemizygous deletions or LOH, and somewhat agnostic for
distinguishing between homozygous deletions/amplifications from normal regions.

To illustrate this idea, consider two scenarios where the true state is amplification of copy number
(e.g., 3 copies) over a regions spanning 10 SNPs. Scenario 1: 7 of the 10 di-allelic genotype calls are
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homozygous. Scenario 2: all 10 of the di-allelic genotype calls are homozygous. For the hidden Markov
model, we assume that the probability of a homozygous genotype call is 0.99 for normal, homozygous
deletion and amplification. For hemizygous deletion and copy-neutral LOH, we specify a probability of
0.9999. Note the following:

� The emission probabilities for the di-allelic genotype calls in scenarios 1 and 2 will be the same
for normal, homozygous deletion, and amplification. The copy number emission probabilities will
discriminate between these states.

� Hemizygous deletion and copy-neutral LOH are penalized severely in scenario 1. This penalization
reflects our belief that the probability of observing 3 genotype errors (AB must be a genotype
error for these states) in a small region.

� In scenario 2, hemizgyous deletion and copy-neutral LOH have a higher emission probability for
the genotypes. However, because the probability of observing homozygous genotype calls for
amplification and normal states is also high, most of the information for discriminating between
and amplification containing 10 homozygous genotype and a copy-neutral region of LOH will be
driven by the emission probability for copy number.

In summary, specifiying high probabilities for observing a homozygous genotype call in normal and
copy number alterered states (as indicated below) allows fairly long stretches of homozygous genotype
calls to occur by chance in any of the states. In our experience, sequences of 70 - 100 homozygous
genotypes are fairly common and likely represent normal regions of the genome with fairly uniform
haplotype structure. If any of the genotype calls are missing and missingness is not independent of the
underlying hidden state, one may specify the probability of a missing genotype calls for each hidden
state (probMissing). By default, the HMM will assume that missing genotype calls are independent of
the underlying hidden state.

> probs <- c(0.99, 0.9999, 0.99, 0.9999, 0.99, 0.99)

> probMissing <- c(0.999, rep(0.01, 5))

> names(probs) <- states

> GT <- calls(chromosome1)

> genotypeEmission <- function(genotypes, states, probHomCall,

+ probMissing, verbose = TRUE) {

+ if (!is.numeric(genotypes))

+ stop("genotypes must be integers (1=AA, 2=AB, 3=BB, 4=missing")

+ emissionForGenotypes <- function(probHomGenotype,

+ genotypes) {

+ isHom <- which(as.vector(genotypes) == 1 | as.vector(genotypes) ==

+ 3)

+ isHet <- which(as.vector(genotypes) == 2)

+ isMissing <- which(as.vector(genotypes) == 4 |

+ is.na(as.vector(genotypes)))

+ emission.gt <- rep(NA, length(genotypes))

+ emission.gt[isHom] <- probHomGenotype

+ emission.gt[isHet] <- 1 - probHomGenotype

+ emission.gt[isMissing] <- NA

+ emission.gt

+ }

+ emission.gt <- array(NA, dim = c(nrow(GT), ncol(GT),

+ length(states)))

+ for (j in 1:ncol(GT)) {

+ emission.gt[, j, ] <- sapply(probs, emissionForGenotypes,
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+ genotypes = GT[, j])

+ if (any(is.na(emission.gt[, j, 1]))) {

+ missing <- is.na(emission.gt[, j, 1])

+ if (!missing(probMissing)) {

+ if (length(probMissing) != length(states))

+ stop("probMissing must be a numeric vector equal to the number of states")

+ emission.gt[missing, j, ] <- matrix(probMissing,

+ sum(missing), length(states), byrow = TRUE)

+ }

+ else {

+ if (verbose)

+ message("Argument probMissing is not specified. Assume that missing genotype calls are independent of the underling hidden state")

+ emission.gt[missing, j, ] <- 1

+ }

+ }

+ }

+ dimnames(emission.gt) <- list(rownames(genotypes),

+ colnames(genotypes), states)

+ return(suppressWarnings(log(emission.gt)))

+ }

> logemission.gt <- genotypeEmission(genotypes = calls(chromosome1),

+ states = states, probHomCall = probs)

Conditional on the hidden state, we assume that the copy number and genotype are independent.
Therefore, the emission probabilities for an HMM that models the copy number and genotypes jointly
are computed by adding the emission probabilities (log-scale) for copy number and genotype:

> logemission <- logemission.gt + logemission.logCT

Transition probabilities We transform the physical distance between adjacent loci to an estimate
of the genomic distance.

> tau <- exp(-2 * diff(ann[, "position"])/(100 * 1e+06))

Note that the above transition probabilities can be scaled by specifying a matrix of dimension S
x S, where S is the number of hidden states. For instance, we define loss of heterozgosity in a single
sample as a sequence of homozygous genotypes that is longer than what one would expect to observe by
chance. One way to control the size (and number) of LOH regions detected is to scale the probability of
transitioning to and from this state. A transition scale matrix of 1’s would not modify the probability
of transitioning between states.

Example with the first SNP.

> epsilon <- 1 - tau[1]

> M <- matrix(epsilon/(length(states) - 1), length(states),

+ length(states))

> dimnames(M) <- list(states, states)

> diag(M) <- tau[1]

> all(rowSums(M) == 1)

[1] TRUE

Note that by default, the transition probability matrix distributes the epsilon equally to the remain-
ing states. We may alter how the epsilon is distributed by scaling this matrix. For instance,
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> tau.scale <- matrix(1, length(states), length(states))

> dimnames(tau.scale) <- list(states, states)

> tau.scale["normal", "LOH"] <- 1e-04

The other states must be rescaled (here, we rescale the other states by a factor scale)

> S <- length(states)

> scale <- (S - 1)/(S - 2 + 1e-04)

> tau.scale["normal", c("homozygousDeletion", "hemizygousDeletion",

+ "3copyAmp", "4copyAmp")] <- scale

> all(round(rowSums(M * tau.scale), 5) == 1)

[1] TRUE

Initial state probabilities

> initialStateProb <- rep(1e-04, length(states))

> initialStateProb[states == "normal"] <- 1 - (length(states) -

+ 1) * 1e-04

Fitting the HMM We use the Viterbi algorithm to find the sequence of hidden states that maximizes
the probability of the observed data.

> fit <- viterbi(initialStateProbs = log(initialStateProb),

+ emission = logemission[, 1, ], tau = tau)

> fit2 <- viterbi(initialStateProbs = log(initialStateProb),

+ emission = logemission[, 1, ], tau = tau, tau.scale = tau.scale)

Note that in the above example, scaling the transition probability matrix did not affect the predicted
sequence of hidden states.

> table(fit)

fit
2 3 5

197 8764 204

> results <- findBreaks(x = fit, states = states, position = ann[,

+ "position"], chromosome = ann[, "chromosome"], sample = colnames(CT))

> results[results$state != "normal", ]

sample chr start end nbases nprobes state
2 NA06993 1 69854466 73174389 3319923 204 3copyAmp
4 NA06993 1 174815096 176704067 1888971 98 hemizygousDeletion
6 NA06993 1 216286002 217872810 1586808 99 hemizygousDeletion

3 Using S4 classes/methods

The objective of developing classes is to facilitate the process of fitting an HMM and to more effec-
tively keep the assaydata and metadata together in one object. The following code uses classes to do
pretty much the same as above. We begin by reproducing the chromosome1 object, an object of class
oligoSnpSet, from scratch.
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> ann[, "chromosome"] <- integer2chromosome(ann[, "chromosome"])

> fD <- new("AnnotatedDataFrame", data = ann, varMetadata = data.frame(labelDescription = colnames(ann)))

> pD <- annotatedDataFrameFrom(CT, byrow = FALSE)

> GT <- matrix(as.integer(GT), nrow(GT), ncol(GT))

> dimnames(GT) <- dimnames(CT)

> chromosome1 <- new("oligoSnpSet", copyNumber = CT, calls = GT,

+ featureData = fD, phenoData = pD, annotation = "pd.mapping50kHind.240,pd.mapping50kXba.240")

> validObject(chromosome1)

[1] TRUE

> options <- new("HmmOptions", snpset = chromosome1, states = states,

+ copyNumber.location = mu, copyNumber.scale = sample.sd[1],

+ probHomCall = c(0.5, 0.999, 0.7, 0.999, 0.7, 0.7))

> params <- new("HmmParameter", states = states(options),

+ initialStateProbability = 0.999)

> cn.emission <- copyNumber.emission(options)

[1] "Calculating emission probabilities on the log(copy number)"
[1] "User-supplied copyNumber.scale should be a standard deviation of the log2 CN"

> gt.emission <- calls.emission(options)

> emission(params) <- cn.emission + gt.emission

> genomicDistance(params) <- exp(-2 * diff(position(chromosome1))/(100 *

+ 1e+06))

> transitionScale(params) <- matrix(1, length(states),

+ length(states))

> class(params)

[1] "HmmParameter"
attr(,"package")
[1] "VanillaICE"

> hmmpredict <- hmm(options, params)

[1] "Transforming copy number to log2 scale."
[1] "Fitting HMM to sample 1"

> class(hmmpredict)

[1] "HmmPredict"
attr(,"package")
[1] "SNPchip"

> breaks <- findBreaks(predictions(hmmpredict), states = states,

+ position = ann[, "position"], chromosome = ann[,

+ "chromosome"], sample = colnames(CT))

See [2] for a more complete description of the simulated dataset and the features detected by this
HMM. We may plot the data along with the predictions as follows:

> gp <- plot(snpset(options), hmmpredict)

[1] "col.predict not specified in list of graphical parameters. Using the following colors:"
[1] "#8C510A" "#D8B365" "#F6E8C3" "#C7EAE5" "#5AB4AC" "#01665E"
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> gp$abline.v <- TRUE

> allParameters <- unlist(snpPar(gp))

> gp$col.predict[3] <- "white"

> gp$hmm.ycoords <- c(0.7, 0.9)

> show(gp)
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3.1 Integrating Confidence Estimates (ICE)

FIXME: integrating confidence estimates of the genotype calls, the probability of a missing genotype,
epsilon probabiity for extreme observations

In this section, we illustrate how one may fit an HMM that incorporates confidence esimates of
the SNP-level summaries for genotype calls and copy number. Confidence scores (inverse of standard
errors) are available for this object (see Section 3.2 for how confidence scores were derived).

This information is incorporated into the HMM emission probabilities. Probably the easiest way to
do that is recreate the options object, and then recalculate the emission probabilities.

> data(chromosome1)

> range(cnConfidence(chromosome1))

[1] 0.2502008 6.9421269

> options <- new("HmmOptions", snpset = chromosome1, states = c("D",

+ "N", "L", "A"), copyNumber.location = c(1, 2, 2,

+ 3), copyNumber.ICE = TRUE, probHomCall = c(0.99,

+ 0.75, 0.99, 0.75))

> params <- new("HmmParameter", states = states(options),

+ initialStateProbability = 0.999)

> cn.emission <- copyNumber.emission(options)

[1] "Calculating emission probabilities on the log(copy number)"
[1] "Using 1/cnConfidence(object) as standard errors for the copy number"

8



> gt.emission <- calls.emission(options)

> emission(params) <- cn.emission + gt.emission

> genomicDistance(params) <- exp(-2 * diff(position(chromosome1))/(100 *

+ 1e+06))

> transitionScale(params) <- matrix(1, length(states(options)),

+ length(states(options)))

> fit.ice <- hmm(options, params)

[1] "Transforming copy number to log2 scale."
[1] "Fitting HMM to sample 1"

> calculateBreakpoints(fit.ice)

sample chr start end nbases nprobes state
1 NA06993 1 836727 49545039 48708312 997 N
2 NA06993 1 49597810 54409755 4811945 102 L
3 NA06993 1 54498950 69838068 15339118 902 N
4 NA06993 1 69854466 71342708 1488242 97 A
5 NA06993 1 71406383 71474047 67664 4 N
6 NA06993 1 71826917 73174389 1347472 103 A
7 NA06993 1 73577300 174815096 101237796 3796 N
8 NA06993 1 174828535 175630040 801505 46 D
9 NA06993 1 175683520 175700199 16679 4 N
10 NA06993 1 175726310 176704067 977757 47 D
11 NA06993 1 176800399 216239917 39439518 1902 N
12 NA06993 1 216286002 217872810 1586808 99 D
13 NA06993 1 217892177 238302668 20410491 901 N
14 NA06993 1 238319943 238417864 97921 5 D
15 NA06993 1 238429864 241076215 2646351 92 N
16 NA06993 1 241483148 242295322 812174 7 A
17 NA06993 1 242374397 246860994 4486597 61 N

We may also incorporate the confidence scores for the genotype calls by specifying calls.ICE=TRUE
(FIX ME). The slot probHomCall stores user-specified probabilities of P(call is AA or BB | state is
LOH) and P(call is AA or BB | state is normal). These probabilities must be specified in this order.
The emission probabilities for the genotype calls will only be calculated for the states LOH (LOH is
defined as a stretch of homozygous genotype calls longer than what one would expect by chance) and
Normal refers to typical ratios of heterozygous to homozygous genotype calls. The slot term5 contains
user-specified probabilities for the P(true genotype is HET | genotype call is AB, hidden state is Normal)
and P(true genotype is HET | genotype call is AA or BB, hidden state is Normal), respectively. Default
values are provided when not specified, as the following example illustrates.

> options <- new("HmmOptions", snpset = chromosome1, states = c("D",

+ "N", "L", "A"), copyNumber.location = c(1, 2, 2,

+ 3), copyNumber.ICE = TRUE, calls.ICE = TRUE, probHomCall = c(0.99,

+ 0.75))

> params <- new("HmmParameter", states = states(options),

+ initialStateProbability = 0.99)

> cn.emission <- copyNumber.emission(options)

> genomicDistance(params) <- exp(-2 * physicalDistance(options)/(100 *

+ 1e+06))

> transitionScale(params) <- scaleTransitionProbability(states(options))
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> gt.emit <- calls.emission(options)

> gt.emission <- array(NA, dim(cn.emission))

> gt.emission[, , 1:2] <- gt.emit

> gt.emission[, , 3:4] <- gt.emit

> emission(params) <- cn.emission + gt.emission

> fit.ice <- hmm(options, params)

> gp <- plot(snpset(options), fit.ice)

[1] "col.predict not specified in list of graphical parameters. Using the following colors:"
[1] "#A6611A" "white" "#80CDC1" "#018571"

> gp$abline.v <- TRUE

> gp$col.predict <- c("darkblue", "white", "yellow", "orange")

> gp$hmm.coords

NULL

> show(gp)

> legend(-0.05, 10, fill = gp$col.predict[c(1, 3, 4)],

+ legend = c("< 2 copies", "copy-neutral LOH", "> 2 copies"),

+ bty = "n", title = "predicted states")

> legend(0, 0.8, legend = "predictions", bty = "n", cex = 0.8,

+ adj = 0)
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Note that the ICE HMM correctly identifies the simulated normal segments in features B and C (the
normal segments were simulated to have high confidence scores). Additionally, the ICE HMM detects
the micro-amplification in region E (also simulated to have high confidence scores).

3.2 Confidence scores

Confidence scores for genotype calls We suggest using the CRLMM algorithm [1] for genotype calls.
CRLMM (in the R package oligo) provides confidence scores (ScGT) of the genotype estimates (ĜT). From
269 HapMap samples assayed on the Affymetrix 50k Xba and Hind chips, we have a gold standard
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of the true genotype defined by the consensus of the HapMap centers. We use kernal based density
estimates to obtain

f
n

S dHOM | dHOM, HOM
o

, f
n

S dHOM | dHOM, HET
o

, f
n

S dHET | dHET, HOM
o

, and f
n

S dHET | dHET, HET
o

(1)

separately for the Xba and Hind 50k chips. The first term in (1), for example, denotes the density of the
scores when the genotype is correctly called homozygous (ĤOM) and the true genotype is homozygous
(HOM). See [2] for a more complete description of the methods. The data needed to estimate these
densities is stored in the experiment data package callsConfidence. callsConfidence is available from the
author’s website.

Confidence scores for copy number estimates To illustrate how standard errors of the copy
number estimate could be integrated in the HMM, the R object chromosome1 contains standard errors
simulated from a shifted Gamma: Gamma(1, 2) + 0.3, where 1 is the shape parameter and 2 is the rate
parameter. To ascertain the effect of qualitatively high confidence scores on the ICE HMM, we scaled a
robust estimate of the copy number standard deviation by 1

2 . Similarly, to simulate less precise ĈN we
scaled ε by 2. For more detailed information about how the data in the chromosome1 was generated,
see the documentation for this object in the R package VanillaICE.

4 The HmmParameter class

An instance of the class is created by the method new:

> new("HmmParameter")

The object params contains all of the parameters needed for fitting the HMM, including an esti-
mate of the genomic distance between SNPs (used for calculating SNP-specific transition probabilities),
emission probabilities (slot: emission), and initial state probabilities.

Emission probabilities. The emission probabilities are stored as an array in the params object. The
emission probability array has dimension R × C × S, where S is the number of hidden states, R is
the number of rows (SNPs), and C is the number of samples. One may use [ to subset object of class
HmmParameter.

> params[5, 1, ]

Formal class 'HmmParameter' [package "VanillaICE"] with 5 slots
..@ states : chr [1:4] "D" "N" "L" "A"
..@ initialStateProbability: num [1:4] 0.000333 0.999 0.000333 0.000333
..@ emission : num [1, 1, 1:4] -1.2 -1.47 -1.19 -1.79
.. ..- attr(*, "dimnames")=List of 3
.. .. ..$ : chr "SNP_A-1662392"
.. .. ..$ : chr "NA06993"
.. .. ..$ : chr [1:4] "D" "N" "L" "A"
..@ genomicDistance : num 1
..@ transitionScale : num [1:4, 1:4] 1 1 1 1 1 1 1 1 1 1 ...
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Transition probabilities. The probability of remaining in the same state, P (St = St+1) (the diago-
nal of the transition probability matrix) is a function of the distance (d) between SNPs: e−2d(100∗1e6).
This value is stored in the slot tau of the params object. The probability of leaving a state is ε, where
ε = 1− P (St = St+1). The ε is split among S − 1 states. The SNP-specific transition probabilities can
be scaled by specifying a matrix. No scaling of the transition probabilities between states, the default,
occurs when the scaling matrix is all 1’s:

> transitionScale(params)

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 1 1 1
[3,] 1 1 1 1
[4,] 1 1 1 1

For illustration, one could make the probability of transitioning from an altered state to a normal
state 10 times as likely as the probability of transitioning between two altered states by the following
commmand:

> transitionScale(params) <- scaleTransitionProbability(states(params),

+ SCALE = 10)

> transitionScale(params)

5 The HmmOptions Class

To be completed . . .

6 The HmmPredict Class

The output from the HMM is an instance of the HmmPredict class and contains the predicted states as
well as the breakpoints for the different states.

> fit.ice

HmmPredict (storageMode: lockedEnvironment)
assayData: 9165 features, 1 samples
element names: predictions

phenoData
sampleNames: NA06993
varLabels and varMetadata description:
family: trio variable
upd: uniparental isodisomy indicator

featureData
featureNames: SNP_A-1677174, SNP_A-1718890, ..., SNP_A-1677548 (9165 total)
fvarLabels and fvarMetadata description:
dbsnp_rs_id: dbsnp_rs_id
chromosome: chrom
...: ...
arm: NA
(9 total)

experimentData: use 'experimentData(object)'
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Annotation: pd.mapping50k.hind240,pd.mapping50k.xba240
hidden states: D N L A
breakpoints:
'data.frame': 17 obs. of 7 variables:
$ sample : chr "NA06993" "NA06993" "NA06993" "NA06993" ...
$ chr : chr "1" "1" "1" "1" ...
$ start : int 836727 49597810 54498950 69854466 71406383 71826917 73577300 174828535 175683520 175726310 ...
$ end : int 49545039 54409755 69838068 71342708 71474047 73174389 174815096 175630040 175700199 176704067 ...
$ nbases : int 48708312 4811945 15339118 1488242 67664 1347472 101237796 801505 16679 977757 ...
$ nprobes: int 997 102 902 97 4 103 3796 46 4 47 ...
$ state : chr "N" "L" "N" "A" ...

The breakpoints are stored in slot breakpoints of an object of class HmmPredict. These functions
do roughly the same thing:

> breaks <- breakpoints(fit.ice)

> predict <- predictions(fit.ice)

> breaks <- findBreaks(x = predict, states = states(fit.ice),

+ position = position(fit.ice), chromosome = chromosome(fit.ice),

+ sample = sampleNames(fit.ice))

> breaks <- calculateBreakpoints(fit.ice)

7 HMMs for different classes of data

7.1 Copy number

The method hmm has a different set of underlying hidden states depending on whether copy number
estimates, genotype calls, or both are available. When only copy number estimates are available, the
hidden states (for autosomes) are hemizygous or homozygous deletion (one or fewer copies), normal (two
copies), and amplification (three or more copies). The corresponding data class is SnpCopyNumberSet.
To illustrate, we convert the chromosome1 example to an object of this class and fit the HMM.

> chr1.cn <- as(chromosome1, "SnpCopyNumberSet")

> options <- new("HmmOptions", snpset = chr1.cn, states = c("D",

+ "N", "A"), copyNumber.location = 1:3)

> params.cn <- new("HmmParameter", states = c("D", "N",

+ "A"))

> emission(params.cn) <- copyNumber.emission(options)

[1] "Calculating emission probabilities on the log(copy number)"

> transitionScale(params.cn) <- scaleTransitionProbability(states = c("D",

+ "N", "A"), normalLabel = "N")

> genomicDistance(params.cn) <- exp(-2 * physicalDistance(options)/(100 *

+ 1e+06))

> fit.cn <- hmm(options, params.cn)

[1] "Transforming copy number to log2 scale."
[1] "Fitting HMM to sample 1"

> breakpoints(fit.cn)
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sample chr start end nbases nprobes state
1 NA06993 1 836727 44702452 43865725 877 N
2 NA06993 1 44722116 44762242 40126 2 D
3 NA06993 1 44779351 69838068 25058717 1122 N
4 NA06993 1 69854466 73153900 3299434 202 A
5 NA06993 1 73174070 174814292 101640222 3797 N
6 NA06993 1 174815096 176800844 1985748 101 D
7 NA06993 1 176926556 216239917 39313361 1899 N
8 NA06993 1 216286002 217872810 1586808 99 D
9 NA06993 1 217892177 238302668 20410491 901 N
10 NA06993 1 238319943 238417864 97921 5 D
11 NA06993 1 238429864 246860994 8431130 160 N

> graph.par <- plot(snpset(options), fit.cn)

[1] "col.predict not specified in list of graphical parameters. Using the following colors:"
[1] "#D8B365" "white" "#5AB4AC"

> graph.par$abline.v <- FALSE

> print(graph.par)

> legend(0, 0.8, fill = graph.par$col.predict[c(1, 3)],

+ legend = c("< 2 copes", "> 2 copies"), bty = "n",

+ cex = 0.8)
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7.2 Genotype calls

When only genotype calls are available, the hidden states are loss and retention (ret) of heterozygosity.
We define loss to be a sequence of homozygous SNPs longer than what we would expect to observe by
chance. Note that many long stretches of homozygosity may occur as a result of a population sharing
a common underlying haplotype structure; loss predictions from an HMM fit to an indvidual do not
necessarily reflect the ’loss’ of an allele in that individual. For illustration, we convert the chromosome1
example to an object of class HmmSnpCallSet and refit the HMM.

> chr1.calls <- as(chromosome1, "SnpCallSet")

> options.calls <- new("HmmOptions", snpset = chr1.calls,

+ states = c("L", "N"), probHomCall = c(0.99, 0.7))

> params.calls <- new("HmmParameter", states = states(options.calls))

> transitionScale(params.calls) <- scaleTransitionProbability(states(options.calls))

> genomicDistance(params.calls) <- exp(-2 * physicalDistance(options.calls)/(100 *

+ 1e+06))

> emission(params.calls) <- calls.emission(options.calls)

> fit.calls <- hmm(options.calls, params.calls)

[1] "Fitting HMM to sample 1"
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> breakpoints(fit.calls)

sample chr start end nbases nprobes state
1 NA06993 1 836727 49545039 48708312 997 N
2 NA06993 1 49597810 54409755 4811945 102 L
3 NA06993 1 54498950 174309008 119810058 4890 N
4 NA06993 1 174418117 176704067 2285950 109 L
5 NA06993 1 176800399 216239917 39439518 1902 N
6 NA06993 1 216286002 217771828 1485826 97 L
7 NA06993 1 217872013 246860994 28988981 1068 N

> gp <- plot(snpset(options.calls), fit.calls)

[1] "col.predict not specified in list of graphical parameters. Using the following colors:"
[1] "black" "white"

> gp$col.predict <- c("black", "white")

> gp$ylim <- c(-0.5, 1)

> gp$add.centromere <- FALSE

> gp$abline.v <- TRUE

> gp$cytoband.ycoords <- c(-0.45, -0.4)

> gp$hmm.ycoords <- c(-0.2, -0.05)

> print(gp)

> legend(0, -0.1, legend = "LOH", fill = "black", title = "predictions",

+ bty = "o", cex = 0.8)
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7.3 Genotype calls and copy number

Section 2 illustrates how one may fit the HMM to objects of class oligoSnpSet.
More documentation about the classes can be found in the documentation for the R package Vanil-

laICE.

8 Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 2.8.0 (2008-10-20), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, splines, stats, tools, utils

� Other packages: Biobase 2.2.0, genefilter 1.22.0, oligoClasses 1.4.0, RColorBrewer 1.0-2, SNPchip 1.6.0,
survival 2.34-1, VanillaICE 1.4.0

� Loaded via a namespace (and not attached): annotate 1.20.0, AnnotationDbi 1.4.0, DBI 0.2-4,
RSQLite 0.7-0
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