\name{estimateSigma} \alias{estimateSigma} \title{Fit zero mean multivariate t-distribution, known df} \usage{ estimateSigma(y, m, v, maxIter = 100, epsilon = 1e-06, verbose = FALSE) } \description{ Estimate the covariance matrix \eqn{\Sigma}{Sigma} of the multivariate t-distribution with zero expectation assuming the degrees of freedom is known. } \arguments{ \item{y}{data matrix} \item{m}{degrees of freedom} \item{v}{scale parameter} \item{maxIter}{maximum number of iterations} \item{epsilon}{convergence criteria} \item{verbose}{print computation info or not} } \details{ The multivariate t-distribution is parametrized as: \deqn{y|c \sim N(\mu,c\Sigma)}{y|c ~ N(mu,c*Sigma)} \deqn{c \sim \mbox{InvGamma}(m/2,m\nu/2)}{c ~ InvGamma(m/2,m*v/2)} Here \eqn{N}{N} denotes a multivariate normal distribution, \eqn{\Sigma}{Sigma} is a covariance matrix and \eqn{\mbox{InvGamma}(\alpha,\beta)}{InvGamma(a,b)} is the inverse-gamma distribution with density function \deqn{f(x)=(\beta)^{\alpha} \exp\{-\beta/x\} x^{-\alpha-1}/\Gamma(\alpha)}{ f(x)=b^a exp\{-b/x\} x^{-a-1} /Gamma(a)} In this application \eqn{\mu}{mu} equals zero, and m is the degrees of freedom. } \value{ \item{Sigma}{Estimated covariance matrix for y} \item{iter}{Number of iterations} } \references{ Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning, volume 1. Springer, first edition. Kristiansson, E., Sj\eqn{\mbox{\"o}}{o}gren, A., Rudemo, M., Nerman, O. (2005). Weighted Analysis of Paired Microarray Experiments. Statistical Applications in Genetics and Molecular Biology 4(1) \eqn{\mbox{\AA}}{A}strand, M. et al. (2007a). Improved covariance matrix estimators for weighted analysis of microarray data. Journal of Computational Biology, Accepted. \eqn{\mbox{\AA}}{A}strand, M. et al. (2007b). Empirical Bayes models for multiple-probe type arrays at the probe level. Bioinformatics, Submitted 1 October 2007. } \author{Magnus \eqn{\mbox{\AA}}{A}strand} \seealso{estimateSigmaMV} \keyword{htest} \keyword{models} \keyword{design}