\name{nem.greedy} \alias{nem.greedy} \alias{print.nem.greedy} \title{Infers a phenotypic hierarchy using a greedy search strategy} \description{ Starting from an initial graph (default: no edges), this strategy successively adds those edges, which most inrease the likelihood of the data under the model. } \usage{ nem.greedy(D,initial=NULL,type="mLL",Pe=NULL,Pm=NULL,lambda=0,delta=1,para=NULL,hyperpara=NULL,verbose=TRUE) \method{print}{nem.greedy}(x, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{D}{data matrix. Columns correspond to the nodes in the silencing scheme. Rows are phenotypes.} \item{initial}{initial model to start greedy hillclimbing from (default: no edges)} \item{type}{see \code{nem}} \item{Pe}{prior position of effect reporters. Default: uniform over nodes in hierarchy} \item{Pm}{prior on model graph (n x n matrix) with entries 0 <= priorPhi[i,j] <= 1 describing the probability of an edge between gene i and gene j.} \item{lambda}{regularization parameter to incorporate prior assumptions.} \item{delta}{regularization parameter for automated E-gene subset selection (CONTmLLRatio only)} \item{para}{vector with parameters a and b for "mLL", if count matrices are used} \item{hyperpara}{vector with hyperparameters a0, b0, a1, b1 for "FULLmLL"} \item{verbose}{do you want to see progress statements printed or not? Default: TRUE} \item{x}{nem object} \item{...}{other arguments to pass} } \value{ nem object } \author{Holger Froehlich} \seealso{\code{\link{nem}}} \examples{ # Drosophila RNAi and Microarray Data from Boutros et al, 2002 data("BoutrosRNAi2002") D <- BoutrosRNAiDiscrete[,9:16] nem(D, para=c(.13,.05), inference="nem.greedy") } \keyword{models}