
matchprobes
April 19, 2009

basecontent Obtain the ATCG content of a gene

Description

This function accepts a character vector representing the nucleotide sequences and computes the
frequencies of each base (A, C, G, T).

Usage

basecontent(seq)
countbases(seq, dna = TRUE)

Arguments

seq Character vector.

dna Logical value indicating whether the sequence is DNA (TRUE) or RNA (FALSE)

Details

The base frequencies are calculated separately for each element of x. The elements of x can be in
upper case, lower case or mixed.

Value

A matrix with 4 columns and length(x) rows. The columns are named A, C, T, G, and the values
in each column are the counts of the corresponding bases in the elements of x. When dna=FALSE,
the T column is replaced with a U column.

Author(s)

R. Gentleman, W. Huber, S. Falcon

See Also

complementSeq,reverseSeq, revcompDNA, revcompRNA

1

2 combineAffyBatch

Examples

v<-c("AAACT", "GGGTT", "ggAtT")
basecontent(v)

countbases(v)

combineAffyBatch A function to combine data from different Affymetrix genechip types
into one AffyBatch.

Description

The function takes a list of AffyBatches and their respective probe sequence information and merges
the intensities from the matching probes only into one AffyBatch.

Usage

combineAffyBatch(batch, probepkg, newcdf, verbose=TRUE)

Arguments

batch A list of AffyBatches.

probepkg A character vector of the same length as batch, containing the names of the
probe sequences libraries (for example, hgu133aprobe) that go with the Affy-
Batches.

newcdf Character. The name of the name CDF environment that is to be created.

verbose Logical. If TRUE, messages are printed to the console.

Details

Note that batch effects may play an important role, e.g. because of slightly but systematically differ-
ent reagents or sample treatments in the experiments at led to the data in the different AffyBatches.
Thus, please interprete the results of this function with caution.

Probe to probe-set mapping: after the common probes between all AffyBatches have been identified,
their mapping into probe sets (=the new CDF environment) is obtained from the restriction of the
mapping of the first element of batch (see variable REFCHIP in the code).

If you want to use this function, please have a look at its code and if necessary, check intermediate
results.

Value

A list with two elements: dat, an AffyBatch, and cdf, an environment that contains the probe-
set to probe mapping.

The phenoData slot of dat will be empty. This is because in most cases this requires some manual
interference. You will need to construct a combined phenoData slot by yourself.

Author(s)

R. Gentleman, Wolfgang Huber

complementSeq 3

Examples

see vignette!

complementSeq Complementary sequence.

Description

Function to obtain the complementary sequence.

Usage

complementSeq(seq, start=1, stop=0)

Arguments

seq Character vector consisting of the letters A, C, G and T.
start Numeric scalar: the sequence position at which to start complementing. If 1,

start from the beginning.
stop Numeric scalar: the sequence position at which to stop complementing. If 0, go

until the end.

Details

The complemented sequence for each element of the input is computed and returned. The comple-
ment is given by the mapping: A -> T, C -> G, G -> C, T -> A.

An important special case is start=13, stop=13: If seq is a vector of 25mer sequences on
an Affymetrix GeneChip, complementSeq(seq, start=13, stop=13) calculates the so-
called mismatch sequences.

The function deals only with sequences that represent DNA. These can consist only of the letters A,
C, T or G. Upper, lower or mixed case is allowed and honored.

Value

A character vector of the same length as seq is returned. Each component represents the trans-
formed sequence for the input value.

Author(s)

R. Gentleman, W. Huber

See Also

basecontent, reverseSeq

Examples

seq <- c("AAACT", "GGGTT")
complementSeq(seq)

seq <- c("CGACTGAGACCAAGACCTACAACAG", "CCCGCATCATCTTTCCTGTGCTCTT")
complementSeq(seq, start=13, stop=13)

4 getProbeDataAffy

getProbeDataAffy Read a data file describing the probe sequences on an Affymetrix
genechip

Description

Read a data file describing the probe sequences on an Affymetrix genechip

Usage

getProbeDataAffy(arraytype, datafile, pkgname = NULL, comparewithcdf = TRUE)

Arguments

arraytype Character. Array type (e.g. ’HG-U133A’)
datafile Character with the filename of the input data file, or a connection (see example).

If omitted a default name is constructed from arraytype (for details you will
need to consult this function’s source code).

pkgname Character. Package name. If NULL the name is derived from arraytype.
comparewithcdf

Logical. If TRUE, run a consistency check against a CDF package of the same
name (what used to be Laurent’s "extraparanoia".)

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackage and (2) the vendor- and possibly
version-specific way the data are represented in datafile.

datafile is a tabulator-separated file with one row per probe, and column names ’Probe X’,
’Probe Y’, ’Probe Sequence’, and ’Probe.Set.Name’. See the vignette for an exam-
ple.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parame-
ter pkgname if it was specified; otherwise, the name is constructed from the
parameter arraytype.

See Also

makeProbePackage

Examples

Please refer to the vignette

getProbeData_1lq 5

getProbeData_1lq Read a 1lq file for an Affymetrix genechip

Description

Read a 1lq file for an Affymetrix genechip

Usage

getProbeData_1lq(arraytype, datafile, pkgname = NULL)

Arguments

arraytype Character. Array type (e.g. ’Scerevisiaetiling)

datafile Character. The filename of the input data file. If omitted a default name is
constructed from arraytype (see this function’s source code).

pkgname Character. Package name. If NULL the name is derived from arraytype.

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackage and (2) the vendor- and possibly
version-specific way the data are represented in datafile.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parame-
ter pkgname if it was specified; otherwise, the name is constructed from the
parameter arraytype.

See Also

makeProbePackage

Examples

makeProbePackage(
arraytype = "Scerevisiaetiling",
maintainer= "Wolfgang Huber <huber@ebi.ac.uk>",
version = "1.1.0",
datafile = "S.cerevisiae_tiling.1lq",
importfun = "getProbeData_1lq")

6 makeProbePackage

longestConsecutive Obtain the length of the longest substring containing only ’letter’

Description

This function accepts a character vector and computes the length of the longest substring containing
only letter for each element of x.

Usage

longestConsecutive(seq, letter)

Arguments

seq Character vector.

letter Character vector of length 1, containing one single character.

Details

The elements of x can be in upper case, lower case or mixed. NAs are handled.

Value

An integer vector of the same length as x.

Author(s)

W. Huber

See Also

complementSeq,basecontent,reverseSeq

Examples

v = c("AAACTGTGFG", "GGGAATT", "CCAAAAAAAAAATT")
longestConsecutive(v, "A")

makeProbePackage Make a package with probe sequence related data for microarrays

Description

Make a package with probe sequence related data for microarrays

makeProbePackage 7

Usage

makeProbePackage(arraytype,
importfun = "getProbeDataAffy",
maintainer,
version,
species,
pkgname = NULL,
outdir = ".",
force = FALSE, quiet = FALSE,
check = TRUE, build = TRUE, unlink = TRUE, ...)

Arguments

arraytype Character. Name of array type (typically a vendor’s name like "HG-U133A").

importfun Character. Name of a function that can read the probe sequence data e.g. from a
file. See getProbeDataAffy for an example.

maintainer Character. Name and email address of the maintainer.

version Character. Version number for the package.

species Character. Species name in the format Genus_species (e.g., Homo_sapiens)

pkgname Character. Name of the package. If missing, a name is created from arraytype.

outdir Character. Path where the package is to be written.

force Logical. If TRUE overrides possible warnings

quiet Logical. If TRUE do not print statements on progress on the console

check Logical. If TRUE call R CMD check on the package

build Logical. If TRUE call R CMD build on the package

unlink Logical. If TRUE unlink (remove) the check directory (only relevant if check=TRUE)

... Further arguments that get passed along to importfun

Details

See vignette.

Important note for Windows users: Building and checking packages requires some tools outside
of R (e.g. a Perl interpreter). While these tools are standard with practically every Unix, they do
not come with MS-Windows and need to be installed separately on your computer. See http:
//www.murdoch-sutherland.com/Rtools. If you just want to build probe packages, you
will not need the compilers, and the "Windows help" stuff is optional.

Examples

filename <- system.file("extdata", "HG-U95Av2_probe_tab.gz",
package="matchprobes")

outdir <- tempdir()
me <- "Wolfgang Huber <huber@ebi.ac.uk>"
makeProbePackage("HG-U95Av2",

datafile = gzfile(filename, open="r"),
outdir = outdir,
maintainer = me,
version = "0.0.1",
species = "Homo_sapiens",

http://www.murdoch-sutherland.com/Rtools
http://www.murdoch-sutherland.com/Rtools

8 matchprobes

check = FALSE,
force = TRUE)

dir(outdir)

matchprobes A function to match a query sequence to the sequences of a set of
probes.

Description

The query sequence, a character string (probably representing a transcript of interest), is scanned
for the presence of exact matches to the sequences in the character vector records. The indices
of the set of matches are returned.

The function is inefficient: it works on R’s character vectors, and the actual matching algorithm is
of time complexity length(query) times length(records)!

Usage

matchprobes(query, records, probepos=FALSE)

Arguments

query A character vector. For example, each element may represent a gene (transcript)
of interest. See Details.

records A character vector. For example, each element may represent the probes on a
DNA array.

probepos A logical value. If TRUE, return also the start positions of the matches in the
query sequence.

Details

toupper is applied to the arguments query and records before matching. The intention of
this is to make the matching case-insensitive. The function is embarrassingly naive. The matching
is done using the C library function strstr.

Value

A list. Its first element is a list of the same length as the input vector. Each element of the list is a
numeric vector containing the indices of the probes that have a perfect match in the query sequence.

If probepos is TRUE, the returned list has a second element: it is of the same shape as described
above, and gives the respective positions of the matches.

Author(s)

R. Gentleman, Laurent Gautier, Wolfgang Huber

print.probetable 9

Examples

if(require("hgu95av2probe")){
data("hgu95av2probe")
seq <- hgu95av2probe$sequence[1:20]
target <- paste(seq, collapse="")
matchprobes(target, seq, probepos=TRUE)

}

print.probetable Print method for probetable objects

Description

Prints class(x), nrow(x) and ncol(x), but not the elements of x. The motivation for having this
method is that methods from the package base such as print.matrix and print.data.frame
will try to print the values of all elements of x, which can take inconveniently much time and screen
space if x is large.

Usage

S3 method for class 'probetable':
print(x, ...)

Arguments

x an object of S3-class probetable.

... further arguments that get ignored.

See Also

print.matrix, print.data.frame

Examples

a = as.data.frame(matrix(runif(1e6), ncol=1e3))
class(a) = c("probetable", class(a))
print(a)
print(as.matrix(a[2:3, 4:6]))

reverseSeq Reverse Sequence

Description

Functions to obtain the reverse and reverse complement of a sequence

Usage

reverseSeq(seq)
revcompDNA(seq)
revcompRNA(seq)

10 reverseSeq

Arguments

seq Character vector. For revcompRNA and revcompDNA the sequence should
consist of appropriate letter codes: [ACGUN] and ACGTN, respectively.

Details

The function reverses the order of the constituent character strings of its argument.

Value

A character vector of the same length as seq.

Author(s)

R. Gentleman, W. Huber, S. Falcon

See Also

basecontent,complementSeq

Examples

w <- c("hey there", "you silly fool")
reverseSeq(w)

w <- "able was I ere I saw Elba"
reverseSeq(w)

rna1 <- "UGCA"
revcompRNA(rna1)

dna1 <- "TGCA"
revcompDNA(dna1)

Index

∗Topic IO
getProbeData_1lq, 5
getProbeDataAffy, 4
makeProbePackage, 6

∗Topic manip
basecontent, 1
combineAffyBatch, 2
complementSeq, 3
longestConsecutive, 6
matchprobes, 8
reverseSeq, 9

∗Topic print
print.probetable, 9

∗Topic utilities
getProbeData_1lq, 5
getProbeDataAffy, 4
makeProbePackage, 6

AffyBatch, 2

basecontent, 1, 3, 6, 10

combineAffyBatch, 2
complementSeq, 1, 3, 6, 10
countbases (basecontent), 1
createPackage, 4, 5

getProbeData_1lq, 5
getProbeDataAffy, 4, 7

longestConsecutive, 6

makeProbePackage, 4, 5, 6
matchprobes, 8

print.data.frame, 9
print.matrix, 9
print.probetable, 9

revcompDNA, 1
revcompDNA (reverseSeq), 9
revcompRNA, 1
revcompRNA (reverseSeq), 9
reverseSeq, 1, 3, 6, 9

toupper, 8

11

	basecontent
	combineAffyBatch
	complementSeq
	getProbeDataAffy
	getProbeData_1lq
	longestConsecutive
	makeProbePackage
	matchprobes
	print.probetable
	reverseSeq
	Index

