\name{plot-methods} \docType{methods} \alias{plot-methods} \alias{plot.LumiBatch} \alias{plot,LumiBatch-method} \alias{plot,LumiBatch,missing-method} \title{Plot of a LumiBatch object} \description{ Creating quality control plots of a LumiBatch object } \usage{ \S4method{plot}{LumiBatch,missing}(x, what = c("density", "boxplot", "pair", "MAplot", "sampleRelation", "outlier", "cv"), main, ...) } \arguments{ \item{x}{ a LumiBatch object returned by \code{\link{lumiQ}} } \item{what}{ one of the six kinds of QC plots } \item{main}{ the title of the QC plot } \item{\dots}{ additional parameters for the corresponding QC plots } } \details{ The parameter "what" of \code{plot} function controls the type of QC plots, which includes: \item{\bold{density}:}{ the density plot of the chips, see \code{\link{hist-methods}}} \item{\bold{boxplot}:}{ box plot of the chip intensities, see \code{\link{boxplot-methods}}} \item{\bold{pair}:}{ the correlation among chips, plot as a hierarchical tree, see \code{\link{pairs-methods}}} \item{\bold{MAplot}:}{ the MAplot between chips, see \code{\link{MAplot-methods}}} \item{\bold{sampleRelation}:}{ plot the sample relations. See \code{\link{plotSampleRelation}}} \item{\bold{outlier}:}{ detect the outliers based on the sample distance to the center. See \code{\link{detectOutlier}}} \item{\bold{cv}:}{ the density plot of the coefficients of variance of the chips. See \code{\link{estimateLumiCV}}} } \seealso{ \code{\link{LumiBatch-class}}, \code{\link{hist-methods}}, \code{\link{boxplot-methods}}, \code{\link{MAplot-methods}}, \code{\link{pairs-methods}}, \code{\link{plotSampleRelation}}, \code{\link{estimateLumiCV}}, \code{\link{detectOutlier}} } \examples{ ## load example data data(example.lumi) ## Quality control estimation lumi.Q <- lumiQ(example.lumi) ## summary summary(lumi.Q) ## plot the density plot(lumi.Q, what='density') ## plot the pairwise sample correlation plot(lumi.Q, what='pair') ## plot the pairwise MAplot plot(lumi.Q, what='MAplot') ## sample relations plot(lumi.Q, what='sampleRelation', method='mds', color=c('100US', '95US:5P', '100US', '95US:5P')) ## detect outlier based on the distance to the mean profile plot(lumi.Q, what='outlier') ## Density plot of coefficient of variance plot(lumi.Q, what='cv') } \keyword{methods} \keyword{hplot}