\name{monoSmu} \alias{monoSmu} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Monotonic smooth method } \description{ Fit the monotonic-constraint spline curve } \usage{ monoSmu(x, y, newX = NULL, nSupport = min(200, length(x)), nKnots = 6, rotate = FALSE, ifPlot = FALSE, xlab = 'x', ylab = 'y', ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ a vector represents x values } \item{y}{ a vector represents y values } \item{newX}{ the new values to be transformed. If not provided, "x" will be used. } \item{nSupport}{ downsampled data points } \item{nKnots}{ parameter used by \code{\link{monoSpline}} } \item{rotate}{ determine whether to rotate the axis with 45 degrees in clockwise, i.e., fit the curve in the MA-plot. } \item{ifPlot}{ determine whether to plot intermediate results } \item{xlab}{ the xlab of the plot } \item{ylab}{ the ylab of the plot } \item{\dots}{ parameters used by \code{\link{supsmu}} and \code{\link{plot}} } } \details{ function called by lumiN.rsn. The function first fits a monotonic spline between vector x and y, then transforms the vector newX based on the fitted spline. (After transformation the fitted spline is supposed to be a diagonal line, i.e., x=y) } \value{ Return the transformed "newX" based on the smoothed curve } \references{ Lin, S.M., Du, P., Kibbe, W.A., {\it Model-based Variance-stabilizing Transformation for Illumina Microarray Data}, submitted } \author{ Simon Lin, Pan Du } \seealso{ \code{\link{monoSpline}} } \examples{ } \keyword{ methods }