
IRanges
April 19, 2009

FilterRules-class Collection of Filter Rules

Description

A FilterRules object is a collection of filter rules, which can be either expression or
function objects. Rules can be disabled/enabled individually, facilitating experimenting with
different combinations of filters.

Details

It is common to split a dataset into subsets during data analysis. When data is large, however,
representing subsets (e.g. by logical vectors) and storing them as copies might become too costly in
terms of space. The FilterRules class represents subsets as lightweight expression and/or
function objects. Subsets can then be calculated when needed (on the fly). This avoids copying
and storing a large number of subsets. Although it might take longer to frequently recalculate a
subset, it often is a relatively fast operation and the space savings tend to be more than worth it
when data is large.

Rules may be either expressions or functions. Evaluating an expression or invoking a function
should result in a logical vector. Expressions are often more convenient, but functions (i.e. closures)
are generally safer and more powerful, because the user can specify the enclosing environment. If
a rule is an expression, it is evaluated inside the envir argument to the eval method (see below).
If a function, it is invoked with envir as its only argument. See examples.

Accesor methods

In the code snippets below, x is a RangedData object.

active(x): Get the logical vector of length length(x), where TRUE for an element indicates
that the corresponding rule in x is active (and inactive otherwise). Note that names(active(x))
is equal to names(x).

active(x) <- value: Replace the active state of the filter rules. If value is a logical vector,
it should be of length length(x) and indicate which rules are active. Otherwise, it can be
either numeric or character vector, in which case it sets the indicated rules (after dropping
NA’s) to active and all others to inactive. See examples.

1

2 FilterRules-class

Constructor

FilterRules(exprs = list(), ..., active = TRUE): Constructs a FilterRules
with the rules given in the list exprs or in The initial active state of the rules is given by
active, which is recycled as necessary. Elements in exprs may be either character (parsed
into an expression), a language object (coerced to an expression), an expression, or a function
that takes at least one argument. IMPORTANTLY, all arguments in ... are quote()’d
and then coerced to an expression. So, for example, character data is only parsed if it is a
literal. The names of the filters are taken from the names of exprs and ..., if given. Other-
wise, the character vectors take themselves as their name and the others are deparsed (before
any coercion). Thus, it is recommended to always specify meaningful names. In any case, the
names are made valid and unique.

Subsetting and Replacement

In the code snippets below, x is a FilterRules object.

x[i]: Subsets the filter rules using the same interface as for TypedList.

x[[i]]: Extracts an expression or function via the same interface as for TypedList.

x[[i]] <- value: The same interface as for TypedList. The default active state for new
rules is TRUE.

Combining

In the code snippets below, x is a FilterRules object.

append(x, values, after = length(x)): Appends the values FilterRules in-
stance onto x at the index given by after.

c(x, ..., recursive = FALSE): Concatenates the FilterRule instances in ... onto
the end of x.

Evaluating

eval(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv()): Evaluates a FilterRules instance (passed
as the expr argument). Expression rules are evaluated in envir, while function rules are
invoked with envir as their only argument. The evaluation of a rule should yield a logical
vector. The results from the rule evaluations are combined via the AND operation (i.e. &) so
that a single logical vector is returned from eval.

Author(s)

Michael Lawrence

See Also

rdapply, which accepts a FilterRules instance to filter each space before invoking the user
function.

GenomicData-class 3

Examples

constructing a FilterRules instance

an empty set of filters
filters <- FilterRules()

as a simple character vector
filts <- c("peaks", "promoters")
filters <- FilterRules(filts)
active(filters) # all TRUE

with functions and expressions
filts <- list(peaks = expression(peaks), promoters = expression(promoters),

find_eboxes = function(rd) rep(FALSE, nrow(rd)))
filters <- FilterRules(filts, active = FALSE)
active(filters) # all FALSE

direct, quoted args (character literal parsed)
filters <- FilterRules(under_peaks = peaks, in_promoters = "promoters")
filts <- list(under_peaks = expression(peaks),

in_promoters = expression(promoters))

specify both exprs and additional args
filters <- FilterRules(filts, diffexp = de)

filts <- c("peaks", "promoters", "introns")
filters <- FilterRules(filts)

set the active state directly

active(filters) <- FALSE # all FALSE
active(filters) <- TRUE # all TRUE
active(filters) <- c(FALSE, FALSE, TRUE)
active(filters)["promoters"] <- TRUE # use a filter name

toggle the active state by name or index

active(filters) <- c(NA, 2) # NA's are dropped
active(filters) <- c("peaks", NA)

GenomicData-class Data on a Genome

Description

GenomicData extends RangedData to more conveniently manipulate data on genomic ranges.
The spaces are now called chromosomes (but could still refer to some other type of sequence). The
annotation refers to the genome and there is formal treatment of an optional strand variable.

Accessors

The GenomicData class essentially adds a set of convenience accessors on top of RangedData.
In the code snippets below, x is a RangedData object.

4 GenomicData-class

chrom(x): Gets the chromosome names (a factor) over the ranges in x.

genome(x): Gets the genome for the ranges in x; a simple wrapper around annotation(x).

strand(x): Gets the strand factor in x, or, if x is missing, return an empty factor with the
standard levels: -, + and *, referring to the negative, positive and both strands, respectively.
Any strand factor stored in GenomicData should have those levels. NA’s are allowed; the
value is all NA if no strand has been specified.

Constructor

GenomicData(ranges, ..., strand = NULL, chrom = NULL, genome = NULL):
Constructs a GenomicData instance with the given ranges and variables in ... (see the
RangedData constructor). If non-NULL, strand specifies the strand of each range. It
should be a character vector or factor of length equal to that of ranges. All values should be
either -, +, * or NA. To get these levels, call levels(strand()). chrom is analogous to
splitter in RangedData; if non-NULL it should be coercible to a factor indicating how
the ranges, variables and strand should be split up across the chromosomes. The genome
argument should be a scalar string and is treated as the RangedData annotation. See the
examples.

Coercion

as(from, "GenomicData"): coerces from to a GenomicData, according to its class:

XRle The bounds of the runs become the ranges and the values become a column named
score.

Note

This may move to another package in the future, as it is not quite general enough for IRanges.

Author(s)

Michael Lawrence

See Also

RangedData, on which this class is based.

Examples

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))

just ranges
gr <- GenomicData(range1)

with a genome (annotation)
gr <- GenomicData(range1, genome = "hg18")
genome(gr) ## "hg18"

with some data
filter <- c(1L, 0L, 1L)
score <- c(10L, 2L, NA)
strand <- factor(c("+", NA, "-"), levels = levels(strand()))
gr <- GenomicData(range1, score, genome = "hg18")
gr[["score"]]

IRanges-class 5

strand(gr) ## all NA
gr <- GenomicData(range1, score, filt = filter, strand = strand)
gr[["filt"]]
strand(gr) ## equal to 'strand'

range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
ranges <- c(range1, range2)
score <- c(score, c(0L, 3L, NA, 22L))
chrom <- paste("chr", rep(c(1,2), c(length(range1), length(range2))), sep="")

gr <- GenomicData(ranges, score, chrom = chrom, genome = "hg18")
chrom(gr) # equal to 'chrom'
gr[["score"]] # unlists over the chromosomes
gr[1][["score"]] # equal to score[1:3]

IRanges-class IRanges and NormalIRanges objects

Description

The IRanges class is a simple implementation of the Ranges container where 2 integer vectors of
the same length are used to store the start and width values. See the Ranges virtual class for a formal
definition of Ranges objects and for their methods (all of them should work for IRanges objects).

A NormalIRanges object is just an IRanges object that is guaranteed to be "normal". See the Nor-
mality section in the man page for Ranges objects for the definition and properties of "normal"
Ranges objects.

Constructor

IRanges(start=NULL, end=NULL, width=NULL): Return the IRanges object contain-
ing the ranges specified by start, end and width. Exactly two of the start, end and
width arguments must be specified as integer vectors (with no NAs) and the other argument
must be NULL. If start and end are specified, then they must be vectors of the same length.
If start and width (or end and width) are specified, then the length of width must be
<= to the length of start and, if it is <, then width is expanded cyclically to the length of
start.

Methods for NormalIRanges objects

max(x): The maximum value in the finite set of integers represented by x.

min(x): The minimum value in the finite set of integers represented by x.

Author(s)

H. Pages

See Also

Ranges-class, IRanges-utils, IRanges-setops

6 IRanges-setops

Examples

Using an IRanges object for storing a big set of ranges is more
efficient than using a standard R data frame:
N <- 2000000L # nb of ranges
W <- 180L # width of each range
start <- 1L
end <- 50000000L
set.seed(777)
range_starts <- sort(sample(end-W+1L, N))
range_widths <- rep.int(W, N)
Instantiation is faster
system.time(x <- IRanges(start=range_starts, width=range_widths))
system.time(y <- data.frame(start=range_starts, width=range_widths))
Subsetting is faster
system.time(x16 <- x[c(TRUE, rep.int(FALSE, 15))])
system.time(y16 <- y[c(TRUE, rep.int(FALSE, 15)),])
Internal representation is more compact
object.size(x16)
object.size(y16)

IRanges-setops Set operations on IRanges objects

Description

Performs set operations on IRanges objects.

Usage

Vector-wise operations:
S4 method for signature 'IRanges, IRanges':
union(x, y)
S4 method for signature 'IRanges, IRanges':
intersect(x, y)
S4 method for signature 'IRanges, IRanges':
setdiff(x, y)

Element-wise (aka "parallel") operations:
punion(x, y, ...)
pintersect(x, y, ...)
psetdiff(x, y, ...)

Arguments

x, y IRanges objects.

... Further arguments to be passed to or from other methods. For example, the
fill.gap argument can be passed to the punion method for IRanges objects
(see below).

IRanges-utils 7

Details

The union, intersect and setdiff methods for IRanges objects return a "normal" IRanges
instance representing the union, intersection and (asymmetric!) difference of the sets of integers
represented by x and y.

punion, pintersect and psetdiff are generic functions that perform the element-wise (aka
"parallel") union, intersection and (asymmetric!) difference of x and y. Methods for IRanges
objects are defined. For these methods, x and y must have the same length (i.e. same number
of ranges) and they return an IRanges instance of the same length as x and y where each range
represents the union/intersection/difference of the corresponding ranges in x and y.

Note that the union or difference of 2 ranges cannot always be represented by a single range so
punion and psetdiff cannot always return their result in an IRanges instance of the same
length as the input. This happens to punion when there is a gap between the 2 ranges to combine.
In that case, the user can use the fill.gap argument to enforce the union by filling the gap. This
happens to psetdiff when a range in y has its end points strictly inside the corresponding range
in x. In that case, psetdiff will simply fail.

Author(s)

H. Pages and M. Lawrence

See Also

Ranges-class, IRanges-class, IRanges-utils

Examples

x <- IRanges(c(1, 5, -2, 0, 14), c(10, 9, 3, 11, 17))
y <- IRanges(c(14, 0, -5, 6, 18), c(20, 2, 2, 8, 20))

Vector-wise operations:
union(x, y)
intersect(x, y)
setdiff(x, y)
setdiff(y, x)

Element-wise (aka "parallel") operations:
try(punion(x, y))
punion(x[3:5], y[3:5])
punion(x, y, fill.gap=TRUE)
pintersect(x, y)
psetdiff(y, x)
try(psetdiff(x, y))
start(x)[4] <- -99
end(y)[4] <- 99
psetdiff(x, y)

IRanges-utils IRanges utility functions

Description

Utility functions for creating or modifying IRanges objects.

8 IRanges-utils

Usage

Create an IRanges instance:
successiveIRanges(width, gapwidth=0, from=1)

Turn a logical vector into a set of ranges:
whichAsIRanges(x)

Modify an IRanges object (endomorphisms):
shift(x, shift, use.names=TRUE)
restrict(x, start=NA, end=NA, keep.all.ranges=FALSE, use.names=TRUE)
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)
reduce(x, with.inframe.attrib=FALSE)
gaps(x, start=NA, end=NA)

Coercion:
asNormalIRanges(x, force=TRUE)

Arguments

width For successiveIRanges, must be a vector of non-negative integers (with
no NAs) specifying the widths of the ranges to create.
For narrow, a vector of integers, eventually with NAs. See the SEW (Start/End/Width)
interface for the details (?solveUserSEW).

gapwidth A single integer or an integer vector with one less element than the width
vector specifying the widths of the gaps separating one range from the next one.

from A single integer specifying the starting position of the first range.

x A logical vector for whichAsIRanges.
An IRanges object for shift, restrict, narrow, reduce, gaps and
asNormalIRanges.

shift A single integer.

use.names TRUE or FALSE. Should names be preserved?

start, end A single integer or NA for all functions except narrow.
For narrow, the supplied start and end arguments must be vectors of inte-
gers, eventually with NAs, that contain coordinates relative to the current ranges.
See the Details section below.

keep.all.ranges
TRUE or FALSE. Should ranges that become "out of limits" after restriction be
kept?

with.inframe.attrib
TRUE or FALSE. For internal use.

force TRUE or FALSE. Should x be turned into a NormalIRanges object even if
isNormal(x) is FALSE?

Details

successiveIRanges returns an IRanges object containing the ranges on subject that have
the widths specified in the width vector and are separated by the gaps specified in gapwidth.
The first range starts at position from.

whichAsIRanges returns an IRanges object containing all of the ranges where x is TRUE.

IRanges-utils 9

shift shifts all the ranges in x.

restrict restricts the ranges in x to the interval specified by the start and end arguments.

narrow narrows the ranges in x i.e. each range in the returned IRanges object is a subrange
of the corresponding range in x. The supplied start/end/width values are solved by a call to
solveUserSEW(width(x), start=start, end=end, width=width) and therefore
must be compliant with the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW
for the details). Then each subrange is derived from the original range according to the solved
start/end/width values for this range. Note that those solved values are interpreted relatively to the
original range.

reduce first orders the ranges in x from left to right, then merges the overlapping or adjacent ones.

gaps returns the normal IRanges object describing the set of integers obtained by removing the set
of integers described by x from the interval specified by the start and end arguments.

If force=TRUE (the default), then asNormalIRanges will turn x into a NormalIRanges in-
stance by reordering and reducing the set of ranges if necessary (i.e. only if isNormal(x) is
FALSE, otherwise the set of ranges will be untouched). If force=FALSE, then asNormalIRanges
will turn x into a NormalIRanges instance only if isNormal(x) is TRUE, otherwise it will raise
an error. Note that when force=FALSE, the returned object is guaranteed to contain exactly the
same set of ranges than x. as(x, "NormalIRanges") is equivalent to asNormalIRanges(x,
force=TRUE).

Author(s)

H. Pages

See Also

Ranges-class, IRanges-class, IRanges-setops, solveUserSEW, successiveViews

Examples

vec <- as.integer(c(19, 5, 0, 8, 5))
whichAsIRanges(vec >= 5)
x <- successiveIRanges(vec)
x
shift(x, -3)
restrict(x, start=12, end=34)
y <- x[width(x) != 0]
narrow(y, start=4, end=-2)
narrow(y, start=-4, end=-2)
narrow(y, end=5, width=3)
narrow(y, start = c(3, 4, 2, 3), end = c(12, 5, 7, 4))

x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),
width=c(5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))

reduce(x)
gaps(x)
gaps(x, start=-6, end=20) # Regions of the -6:20 range that are not masked by 'x'.
asNormalIRanges(x) # 3 ranges ordered from left to right and separated by

gaps of width >= 1.

More on normality:
example(`IRanges-class`)
isNormal(x16) # FALSE
if (interactive())

10 IRangesList-class

x16 <- asNormalIRanges(x16) # Error!
whichFirstNotNormal(x16) # 57
isNormal(x16[1:56]) # TRUE
xx <- asNormalIRanges(x16[1:56])
class(xx)
max(xx)
min(xx)

IRangesList-class List of IRanges

Description

A RangesList that only stores IRanges instances.

Constructor

IRangesList(...): Each IRanges in ... becomes an element in the new IRangesList,
in the same order. This is analogous to the list constructor, except every argument in ...
must be derived from IRanges.

Coercion

as(from, "NormalIRanges"): Merges each of the elements into a single NormalIRanges
through reduce.

unlist(x): Unlists x, an IRangesList, by concatenating all of the ranges into a single
IRanges instance. If the length of x is zero, an empty IRanges is returned.

Author(s)

Michael Lawrence

See Also

RangesList, the parent of this class, for more functionality.

Examples

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
named <- IRangesList(one = range1, two = range2)
length(named) # 2
names(named) # "one" and "two"
named[[1]] # range1
unnamed <- IRangesList(range1, range2)
names(unnamed) # NULL

IntervalTree-class 11

IntervalTree-class Interval Search Trees

Description

An IntervalTree instance is an external representation of ranges (i.e. it is derived from XRanges)
that is optimized for overlap queries.

Details

A common type of query that arises when working with intervals is finding which intervals in one
set overlap those in another. An efficient family of algorithms for answering such queries is known
as the Interval Tree. This class makes use of the augmented tree algorithm from the reference below,
but heavily adapts it for the use case of large, sorted query sets.

The usual workflow is to create an IntervalTree using the constructor described below and
then perform overlap queries using the overlap method. The results of the query are returned as
a RangesMatching object.

Constructor

IntervalTree(ranges): Creates an IntervalTree from the ranges in ranges, an object co-
ercible to IntervalTree, such as an IRanges instance.

Finding Overlaps

This main purpose of the interval tree is to optimize the search for ranges overlapping those in a
query set. The interface for this operation is the overlap function.

overlap(object, query = object, maxgap = 0, multiple = TRUE):
Find the intervals in query, a Ranges instance, that overlap with the intervals object,
an IntervalTree or, for convenience, a Ranges coercible to a IntervalTree. If
query is omitted, object is queried against itself. Intervals with a separation of maxgap
or less are considered to be overlapping. maxgap should be a scalar, non-negative, non-NA
number. When multiple (a scalar non-NA logical) is TRUE, the results are returned as a
RangesMatching object.
If multiple is FALSE, at most one overlapping interval in object is returned for each in-
terval in query. The matchings are returned as an integer vector of length length(query),
with NA indicating intervals that did not overlap any intervals in object. This is analogous
to the return value of the match function.

x %in% table: Shortcut for finding the ranges in x that overlap any of the ranges in table.
Both x and table should be Ranges instances. The result is a logical vector of the same
length as x.

Coercion

as(from, "IRanges"): Imports the ranges in from, an IntervalTree, to an IRanges.

as(from, "IntervalTree"): Constructs an IntervalTree representing from, a Ranges
instance that is coercible to IRanges.

12 IntervalTree-class

Accessors

length(x): Gets the number of ranges stored in the tree. This is a fast operation that does not
bring the ranges into R.

Notes on Time Complexity

The cost of constructing an instance of the interval tree is a O(n*lg(n)), which makes it about
as fast as other types of overlap query algorithms based on sorting. The good news is that the
tree need only be built once per subject; this is useful in situations of frequent querying. Also, in
this implementation the data is stored outside of R, avoiding needless copying. Of course, external
storage is not always convenient, so it is possible to coerce the tree to an instance of IRanges (see
the Coercion section).

For the query operation, the running time is based on the query size m and the average number of
hits per query k. The output size is then max(mk,m), but we abbreviate this as mk. Note that
when the multiple parameter is set to FALSE, k is fixed to 1 and drops out of this analysis. We
also assume here that the query is sorted by start position, which is an assertion of the overlap
method.

An upper bound for finding overlaps is O(min(mk*lg(n),n+mk)). The fastest interval tree
algorithm known is bounded by O(min(m*lg(n),n)+mk) but is a lot more complicated and
involves two auxillary trees. The lower bound is Omega(lg(n)+mk), which is almost the same
as for returning the answer, Omega(mk). The average is of course somewhere in between.

This analysis informs the choice of which set of ranges to process into a tree, i.e. assigning one to
be the subject and the other to be the query. Note that if m > n, then the running time is O(m), and
the total operation of complexity O(n*lg(n) + m) is better than if m and n were exchanged.
Thus, for once-off operations, it is often most efficient to choose the smaller set to become the tree
(but k also affects this). This is reinforced by the realization that if mk is about the same in either
direction, the running time depends only on n, which should be minimized. Even in cases where
a tree has already been constructed for one of the sets, it can be more efficient to build a new tree
when the existing tree of size n is much larger than the query set of size m, roughly when n >
m*lg(n).

Author(s)

Michael Lawrence

References

Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,
Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN 0-262-
53196-8

See Also

XRanges, the parent of this class, RangesMatching, the result of an overlap query.

Examples

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
tree <- IntervalTree(subject)

at most one hit per query
overlap(tree, query, multiple = FALSE) # c(2, NA, 3)

MaskCollection-class 13

allow multiple hits
overlap(tree, query)

overlap as long as distance <= 1
overlap(tree, query, maxgap = 1)

shortcut
overlap(subject, query)

query and subject are easily interchangeable
query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2), c(5, 4))
tree <- IntervalTree(subject)
t(overlap(tree, query))
the same as:
overlap(query, subject)

one Ranges with itself
overlap(query)

MaskCollection-class
MaskCollection objects

Description

The MaskCollection class is a container for storing a collection of masks that can be used to mask
regions in a sequence.

Details

In the context of the Biostrings package, a mask is a set of regions in a sequence that need to
be excluded from some computation. For example, when calling alphabetFrequency or
matchPattern on a chromosome sequence, you might want to exclude some regions like the
centromere or the repeat regions. This can be achieved by putting one or several masks on the
sequence before calling alphabetFrequency on it.

A MaskCollection object is a vector-like object that represents such set of masks. Like standard
R vectors, it has a "length" which is the number of masks contained in it. But unlike standard R
vectors, it also has a "width" which determines the length of the sequences it can be "put on". For
example, a MaskCollection object of width 20000 can only be put on an XString object of 20000
letters.

Each mask in a MaskCollection object x is just a finite set of integers that are >= 1 and <=
width(x). When "put on" a sequence, these integers indicate the positions of the letters to mask.
Internally, each mask is represented by a NormalIRanges object.

Basic accesor methods

In the code snippets below, x is a MaskCollection object.

length(x): The number of masks in x.

14 MaskCollection-class

width(x): The common with of all the masks in x. This determines the length of the sequences
that x can be "put on".

active(x): A logical vector of the same length as x where each element indicates whether the
corresponding mask is active or not.

names(x): NULL or a character vector of the same length as x.
desc(x): NULL or a character vector of the same length as x.
nir_list(x): A list of the same length as x, where each element is a NormalIRanges object

representing a mask in x.

Constructor

Mask(mask.width, start=NULL, end=NULL, width=NULL): Return a single mask
(i.e. a MaskCollection object of length 1) of width mask.width (a single integer >= 1) and
masking the ranges of positions specified by start, end and width. See the IRanges
constructor (?IRanges) for how start, end and width can be specified. Note that the
returned mask is active and unnamed.

Other methods

In the code snippets below, x is a MaskCollection object.

isEmpty(x): Return a logical vector of the same length as x, indicating, for each mask in x,
whether it’s empty or not.

max(x): The greatest (or last, or rightmost) masked position for each mask. This is a numeric
vector of the same length as x.

min(x): The smallest (or first, or leftmost) masked position for each mask. This is a numeric
vector of the same length as x.

maskedwidth(x): The number of masked position for each mask. This is an integer vector of
the same length as x where all values are >= 0 and <= width(x).

maskedratio(x): maskedwidth(x) / width(x)

Subsetting and appending

In the code snippets below, x and values are MaskCollection objects.

x[i]: Return a new MaskCollection object made of the selected masks. Subscript i can be a
numeric, logical or character vector.

x[[i, exact=TRUE]]: Extract the mask selected by i as a NormalIRanges object. Subscript
i can be a single integer or a character string.

append(x, values, after=length(x)): Add masks in values to x.

Other methods

In the code snippets below, x is a MaskCollection object.

reduce(x): Return a MaskCollection object of length 1 made of the union (or merging, or
collapsing) of all the active masks in x.

gaps(x): Invert the masks in x.
subseq(x, start=NA, end=NA, width=NA): If y is a sequence that x has been put on

top of, then subseqwill return the set of submasks that go on top of the subsequence obtained
by calling subseq on y (subseq must be called on x with the same arguments that have
been used when called on y).

rdapply 15

Author(s)

H. Pages

See Also

NormalIRanges-class, read.Mask, MaskedXString-class, alphabetFrequency, reverse, matchPattern

Examples

Making a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
mymasks
length(mymasks)
width(mymasks)
reduce(mymasks)
gaps(mymasks)

Names and descriptions:
names(mymasks) <- c("A", "B", "C") # names should be short and unique...
mymasks
mymasks[c("C", "A")] # ...to make subsetting by names easier
desc(mymasks) <- c("you can be", "more verbose", "here")
mymasks[-2]

Activate/deactivate masks:
active(mymasks)["B"] <- FALSE
mymasks
reduce(mymasks)
active(mymasks) <- FALSE # deactivate all masks
mymasks
active(mymasks)[-1] <- TRUE # reactivate all masks except mask 1
active(mymasks) <- !active(mymasks) # toggle all masks

Other advanced operations:
mymasks[[2]]
length(mymasks[[2]])
mymasks[[2]][-3]
append(mymasks[-2], gaps(mymasks[2]))
mymasks2 <- subseq(mymasks, start=8)
mymasks2
mymasks2[[2]]

rdapply Applying over spaces

Description

The rdapply function applies a user function over the spaces of a RangedData. The parameters
to rdapply are collected into an instance of RDApplyParams, which is passed as the sole
parameter to rdapply.

16 rdapply

Usage

rdapply(x, ...)

Arguments

x The RDApplyParams instance, see below for how to make one.

... Additional arguments for methods

Details

The rdapply function is an attempt to facilitate the common operation of performing the same
operation over each space (e.g. chromosome) in a RangedData. To facilitate a wide array of
such tasks, the function takes a large number of options. The RDApplyParams class is meant
to help manage this complexity. In particular, it facilitates experimentation through its support for
incremental changes to parameter settings.

There are two RangedData settings that are required: the user function object and the RangedData
over which it is applied. The rest of the settings determine what is actually passed to the user func-
tion and how the return value is processed before relaying it to the user. The following is the
description and rationale for each setting.

rangedData REQUIRED. The RangedData instance over which applyFun is applied.

applyFun REQUIRED. The user function to be applied to each space in the RangedData.
The function must expect the RangedData as its first parameter and also accept the param-
eters specified in applyParams.

applyParams The list of additional parameters to pass to applyFun. Usually empty.

filterRules The instance of FilterRules that is used to filter each subset of the RangedData
passed to the user function. This is an efficient and convenient means for performing the
same operation over different subsets of the data on a space-by-space basis. In particular, this
avoids the need to store subsets of the entire RangedData. A common workflow is to in-
voke rdapply with one set of active filters, enable different filters, reinvoke rdapply, and
compare the results.

simplify A scalar logical (TRUE or FALSE) indicating whether the list to be returned from
rdapply should be simplified as by sapply. Defaults to FALSE.

reducerFun The function that is used to convert the list that would otherwise be returned
from rdapply to something more convenient. The function should take the list as its first
parameter and also accept the parameters specified in reducerParams. This is an alterna-
tive to the primitive behavior of the simplify option (so simplify must be FALSE if this
option is set). The aim is to orthogonalize the applyFun operation (i.e. the statistics) from
the data structure of the result.

reducerParams A list of additional parameters to pass to reducerFun. Can only be set if
reducerFun is set. Usually empty.

Value

By default a list holding the result of each invocation of the user function, but see details.

Constructing an RDApplyParams object

RDApplyParams(rangedData, applyFun, applyParams, filterRules, simplify,
reducerFun, reducerParams): Constructs a RDApplyParams object with each set-
ting specified by the argument of the same name. See the Details section for more information.

rdapply 17

Accessors

In the following code snippets, x is an RDApplyParams object.

rangedData(x), rangedData(x) <- value: Get or set the RangedData instance over
which applyFun is applied.

applyFun(x), applyFun(x) <- value: Get or set the user function to be applied to
each space in the RangedData.

applyParams(x), applyParams(x) <- value: Get or set the list of additional pa-
rameters to pass to applyFun.

filterRules(x), filterRules(x) <- value: Get or set the instance of FilterRules
that is used to filter each subset of the RangedData passed to the user function.

simplify(x), simplify(x) <- value: Get or set a a scalar logical (TRUE or FALSE) in-
dicating whether the list to be returned from rdapply should be simplified as by sapply.

reducerFun(x), reducerFun(x) <- value: Get or set the function that is used to
convert the list that would otherwise be returned from rdapply to something more con-
venient.

reducerParams(x), reducerParams(x) <- value: Get or set a list of additional
parameters to pass to reducerFun.

Author(s)

Michael Lawrence

See Also

RangedData, FilterRules

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
score <- c(2L, 0L, 1L)
rd <- RangedData(ranges, score, splitter = c("chr1","chr2","chr1"))

a single function
countrows <- function(rd) nrow(rd)
params <- RDApplyParams(rd, countrows)
rdapply(params) # list(chr1 = 2L, chr2 = 1L)

with a parameter
params <- RDApplyParams(rd, function(rd, x) nrow(rd)*x, list(x = 2))
rdapply(params) # list(chr1 = 4L, chr2 = 2L)

add a filter
cutoff <- 0
rules <- FilterRules(filter = score > cutoff)
params <- RDApplyParams(rd, countrows, filterRules = rules)
rdapply(params) # list(chr1 = 2L, chr2 = 0L)
rules <- FilterRules(list(fun = function(rd) rd[["score"]] < 2),

filter = score > cutoff)
params <- RDApplyParams(rd, countrows, filterRules = rules)
rdapply(params) # list(chr1 = 1L, chr2 = 0L)
active(filterRules(params))["filter"] <- FALSE
rdapply(params) # list(chr1 = 1L, chr2 = 1L)

18 RangedData-class

simplify
params <- RDApplyParams(rd, countrows, simplify = TRUE)
rdapply(params) # c(chr1 = 2L, chr2 = 1L)

reducing
params <- RDApplyParams(rd, countrows, reducerFun = unlist,

reducerParams = list(use.names = FALSE))
rdapply(params) ## c(2L, 1L)

RangedData-class Data on ranges

Description

RangedData supports storing data, i.e. a set of variables, on a set of ranges spanning multiple
spaces (e.g. chromosomes). Although the data is split across spaces, it can still be treated as
one cohesive dataset when desired. In order to handle large datasets, the data values are stored
externally to avoid copying, and the rdapply function facilitates the processing of each space
separately (divide and conquer).

Details

A RangedData object consists of two primary components: a RangesList holding the ranges
over multiple spaces and a parallel SplitXDataFrame, holding the split data. There is also an
annotation slot for denoting the source (e.g. the genome) of the ranges and/or data.

There are two different modes of interacting with a RangedData. The first mode treats the object
as a contiguous "data frame" annotated with range information. The accessors start, end, and
width get the corresponding fields in the ranges as atomic integer vectors, undoing the division
over the spaces. The [[and matrix-style [, extraction and subsetting functions unroll the data
in the same way. [[<- does the inverse. The number of rows is defined as the total number of
ranges and the number of columns is the number of variables in the data. It is often convenient and
natural to treat the data this way, at least when the data is small and there is no need to distinguish
the ranges by their space.

The other mode is to treat the RangedData as a list, with an element (a virtual Ranges/XDataFrame
pair) for each space. The length of the object is defined as the number of spaces and the value re-
turned by the names accessor gives the names of the spaces. The list-style [subset function
behaves analogously. The rdapply function provides a convenient and formal means of applying
an operation over the spaces separately. This mode is helpful when ranges from different spaces
must be treated separately or when the data is too large to process over all spaces at once.

Accesor methods

In the code snippets below, x is a RangedData object.

The following accessors treat the data as a contiguous dataset, ignoring the division into spaces:

Array accessors:

nrow(x): The number of ranges in x.
ncol(x): The number of data variables in x.
dim(x): An integer vector of length two, essentially c(nrow(x), ncol(x)).

RangedData-class 19

rownames(x): Gets the names of the ranges in x.

colnames(x): Gets the names of the variables in x.

dimnames(x): A list with two elements, essentially list(rownames(x), colnames(x)).

Range accessors. The type of the return value depends on the type of Ranges. For IRanges, an
integer vector. Regardless, the number of elements is always equal to nrow(x).

start(x): The start value of each range.

width(x): The width of each range.

end(x): The end value of each range.

These accessors make the object seem like a list along the spaces:

length(x): The number of spaces (e.g. chromosomes) in x.

names(x): The names of the spaces (e.g. "chr1"). NULL or a character vector of the same
length as x.

names(x) <- value: Set the names of the spaces, where value is either NULL or a character
vector of the same length as x.

Other accessors:

annotation(object): Here, object is a RangedData object. Get the scalar string iden-
tifying the source of the data in some way (e.g. genome, experimental platform, etc).

ranges(x): Gets the ranges in x as a RangesList.

values(x): Gets the data values in x as a SplitXDataFrame.

Constructor

RangedData(ranges = IRanges(), ..., splitter = NULL, annotation = NULL):
Creates a RangedData with the ranges in ranges and variables given by the arguments in
.... See the constructor XDataFrame for how the ... arguments are interpreted. If
splitter is NULL, all of the ranges and values are placed into the same space, resulting
in a single-space (length one) RangedData. Otherwise, the ranges and values are split into
spaces according to splitter, which is treated as a factor, like the f argument in split.
The annotation may be specified as a scalar string by the annotation argument.

Coercion

as.data.frame(x, row.names=NULL, optional=FALSE, ...): Copy the start, end,
width of the ranges and all of the variables as columns in a data.frame. This is a bridge
to existing functionality in R, but of course care must be taken if the data is large. Note that
optional and ... are ignored.

as(from, "XDataFrame"): Like as.data.frame above, except the result is an XDataFrame
and it probably involves less copying, especially if there is only a single space.

as(from, "RangedData"): coerces from to a RangedData, according to its class:

XRle The bounds of the runs become the ranges and the values become a column named
score.

20 RangedData-class

Subsetting and Replacement

In the code snippets below, x is a RangedData object.

x[i]: Subsets x by indexing into its spaces, so the result is of the same class, with a different set
of spaces. i can be numerical, logical, NULL or missing.

x[i,j]: Subsets x by indexing into its rows and columns. The result is of the same class, with a
different set of rows and columns. Note that this differs from the subset form above, because
we are now treating x as one contiguous dataset.

x[[i]]: Extracts a variable from x, where i can be a character, numeric, or logical scalar that
indexes into the columns. The variable is unlisted over the spaces.

x[[i]] <- value: Sets value as column i in x, where i can be a character, numeric, or
logical scalar that indexes into the columns. The length of value should equal nrow(x).
x[[i]] should be identical to value after this operation.

Splitting and Combining

In the code snippets below, x is a RangedData object.

split(x, f, drop = FALSE): Split x according to f, which should be of length equal to
nrow(x). Note that drop is ignored here. The result is a RangedDataList where every
element has the same length (number of spaces) but different sets of ranges within each space.

c(x, ..., recursive = FALSE): Combines x with arguments specified in ..., which
must all be RangedData instances. This combination acts as if x is a list of spaces, meaning
that the result will contain the spaces of the first concatenated with the spaces of the second,
and so on. This function is useful when creating RangedData instances on a space-by-space
basis and then needing to combine them.

Author(s)

Michael Lawrence

See Also

RangedData-utils for utlities and the rdapply function for applying a function to each space
separately.

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
filter <- c(1L, 0L, 1L)
score <- c(10L, 2L, NA)

constructing RangedData instances

no variables
rd <- RangedData()
rd <- RangedData(ranges)
ranges(rd)
one variable
rd <- RangedData(ranges, score)
rd[["score"]]
multiple variables
rd <- RangedData(ranges, filter, vals = score)

RangedData-class 21

rd[["vals"]] # same as rd[["score"]] above
rd[["filter"]]
rd <- RangedData(ranges, score + score)
rd[["score...score"]] # names made valid
use an annotation
rd <- RangedData(ranges, annotation = "hg18")
annotation(rd)

split some data over chromosomes

range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
both <- c(ranges, range2)
score <- c(score, c(0L, 3L, NA, 22L))
filter <- c(filter, c(0L, 1L, NA, 0L))
chrom <- paste("chr", rep(c(1,2), c(length(ranges), length(range2))), sep="")

rd <- RangedData(both, score, filter, splitter = chrom, annotation = "hg18")
rd[["score"]] # identical to score
rd[1][["score"]] # identical to score[1:3]

subsetting

list style: [i]

rd[numeric()] # these three are all empty
rd[logical()]
rd[NULL]
rd[] # missing, full instance returned
rd[FALSE] # logical, supports recycling
rd[c(FALSE, FALSE)] # same as above
rd[TRUE] # like rd[]
rd[c(TRUE, FALSE)]
rd[1] # numeric index
rd[c(1,2)]
rd[-2]

matrix style: [i,j]

rd[,NULL] # no columns
rd[NULL,] # no rows
rd[,1]
rd[,1:2]
rd[,"filter"]
rd[1,] # now by the rows
rd[c(1,3),]
rd[1:2, 1] # row and column
rd[c(1:2,1,3),1] ## repeating rows

variable replacement

count <- c(1L, 0L, 2L)
rd <- RangedData(ranges, count, splitter = c(1, 2, 1))
adding a variable
score <- c(10L, 2L, NA)
rd[["score"]] <- score
rd[["score"]] # same as 'score'
replacing a variable

22 RangedData-utils

count2 <- c(1L, 1L, 0L)
rd[["count"]] <- count2
numeric index also supported
rd[[2]] <- score
rd[[2]] # gets 'score'
removing a variable
rd[[2]] <- NULL
ncol(rd) # is only 1

combining/splitting

rd <- RangedData(ranges, score, splitter = c(1, 2, 1))
c(rd[1], rd[2]) # equal to 'rd'
rd2 <- RangedData(ranges, score)
unlist(split(rd2, c(1, 2, 1))) # same as 'rd'

RangedData-utils RangedData utility functions

Description

Utility functions for manipulating RangedData objects.

Usage

S4 method for signature 'expressionORlanguage,
RangedData':
eval(expr, envir, enclos = parent.frame())

Arguments

expr The expression, call, or name to be evaluated.

envir The RangedData object in which to evaluate expr.

enclos The environment in which to look for symbols that do not exist in the envi-
ronment formed from RangedData.

Details

The eval method converts the RangedData object specified in envir to an environmnent,
with enclos as its parent, and then evaluates expr within that environment. The RangedData
environment contains the following objects:

ranges The result of unlist(ranges(envir)), i.e. all of the ranges in a single Ranges
object.

colnames(envir) The data columns in envir are stored individually by their column names.

The objects are not actually copied into the environment. Rather, they are dynamically bound using
makeActiveBinding. This prevents unnecessary copying of the data from the external vectors
into R vectors. The values are cached, so that the data is not copied every time the symbol is
accessed.

RangedDataList-class 23

Value

The result of expression evaluation.

Author(s)

Michael Lawrence

See Also

FilterRules objects, which can be evaluated on a RangedData, and the base eval function.

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
score <- c(10L, 2L, NA)
rd <- RangedData(ranges, score)
evalq(score > 3, rd)

RangedDataList-class
Lists of RangedData

Description

A formal list of RangedData objects. Extends and inherits all its methods from TypedList.
One use case is to group together all of the samples from an experiment generating data on ranges.

Constructor

RangedDataList(...): Contatenates the RangedData instances in ... into a new RangedDataList.

Author(s)

Michael Lawrence

See Also

RangedData, the element type of this TypedList.

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
a <- RangedData(IRanges(c(1,2,3),c(4,5,6)), score = c(10L, 2L, NA))
b <- RangedData(IRanges(c(1,2,4),c(4,7,5)), score = c(3L, 5L, 7L))
RangedDataList(sample1 = a, sample2 = b)

24 Ranges-class

Ranges-class Ranges objects

Description

The Ranges virtual class is a general container for storing a set of integer ranges.

Details

A Ranges object is a vector-like object where each element describes a "range of integer values".

A "range of integer values" is a finite set of consecutive integer values. Each range can be fully
described with exactly 2 integer values which can be arbitrarily picked up among the 3 following
values: its "start" i.e. its smallest (or first, or leftmost) value; its "end" i.e. its greatest (or last, or
rightmost) value; and its "width" i.e. the number of integer values in the range. For example the set
of integer values that are greater than or equal to -20 and less than or equal to 400 is the range that
starts at -20 and has a width of 421. In other words, a range is a closed, one-dimensional interval
with integer end points and on the domain of integers.

The starting point (or "start") of a range can be any integer (see start below) but its "width" must
be a non-negative integer (see width below). The ending point (or "end") of a range is equal to its
"start" plus its "width" minus one (see end below). An "empty" range is a range that contains no
value i.e. a range that has a null width. Note that for an empty range, the end is smaller than the
start.

Two ranges are considered equal iff they share the same start and width. Note that with this defi-
nition, 2 empty ranges are generally not equal (they need to share the same start to be considered
equal).

The length of a Ranges object is the number of ranges in it, not the number of integer values in its
ranges.

A Ranges object is considered empty iff all its ranges are empty.

Ranges objects have a vector-like semantic i.e. they only support single subscript subsetting (unlike,
for example, standard R data frames which can be subsetted by row and by column).

The Ranges class itself is a virtual class. The following classes derive directly from the Ranges
class: IRanges and XRanges.

Methods

In the code snippets below, x, y and object are Ranges objects. Not all the functions described be-
low will necessarily work with all kinds of Ranges objects but they should work at least for IRanges
objects. Also more operations on Ranges objects are described in the man page for IRanges-utils
(shift, restrict, narrow, reduce, gaps), for IntervalTree objects (overlap) and for
RangesList objects (split method for Ranges objects).

length(x): The number of ranges in x.

start(x): The start values of the ranges. This is an integer vector of the same length as x.

width(x): The number of integer values in each range. This is a vector of non-negative integers
of the same length as x.

end(x): start(x) + width(x) - 1L

names(x): NULL or a character vector of the same length as x.

Ranges-class 25

update(object, ...): Convenience method for combining multiple modifications of object
in one single call. For example object <- update(object, start=start(object)-2L,
end=end(object)+2L) is equivalent to start(object) <- start(object)-2L;
end(object) <- end(object)+2L.

isEmpty(x): Return a logical value indicating whether x is empty or not.

as.matrix(x, ...): Convert x into a 2-column integer matrix containing start(x) and
width(x). Extra arguments (...) are ignored.

as.data.frame(x, row.names=NULL, optional=FALSE, ...): Convert x into a
standard R data frame object. row.names must be NULL or a character vector giving the
row names for the data frame, and optional and any additional argument (...) is ignored.
See ?as.data.frame for more information about these arguments.

duplicated(x): Determine which elements of x are equal to elements with smaller subscripts,
and returns a logical vector indicating which elements are duplicates. It is semantically equiva-
lent to duplicated(as.data.frame(x)) (see ?duplicated for more information).

x[i]: Return a new Ranges object (of the same type as x) made of the selected ranges. i can be
a numeric vector, a logical vector, NULL or missing. If x is a NormalIRanges object and i a
positive numeric subscript (i.e. a numeric vector of positive values), then i must be strictly
increasing.

rep(x, times): Return a new Ranges object made of the repeated elements.

c(x, ...): Concatenate x and the Ranges objects in ... together. The result is returned as an
IRanges object.

Normality

A Ranges object x is implicitly representing an arbitrary finite set of integers (that are not necessar-
ily consecutive). This set is the set obtained by taking the union of all the values in all the ranges in
x. This representation is clearly not unique: many different Ranges objects can be used to represent
the same set of integers. However one and only one of them is guaranteed to be "normal".

By definition a Ranges object is said to be "normal" when its ranges are: (a) not empty (i.e. they
have a non-null width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e.
there must be a non empty gap between 2 consecutive ranges).

Here is a simple algorithm to determine whether x is "normal": (1) if length(x) == 0, then x
is normal; (2) if length(x) == 1, then x is normal iff width(x) >= 1; (3) if length(x)
>= 2, then x is normal iff:

start(x)[i] <= end(x)[i] < start(x)[i+1] <= end(x)[i+1]

for every 1 <= i < length(x).

The obvious advantage of using a "normal" Ranges object to represent a given finite set of integers
is that it is the smallest in terms of of number of ranges and therefore in terms of storage space.
Also the fact that we impose its ranges to be ordered from left to right makes it unique for this
representation.

A special container (NormalIRanges) is provided for holding a "normal" IRanges object: a Nor-
malIRanges object is just an IRanges object that is guaranteed to be "normal".

Here are some methods related to the notion of "normal" Ranges:

isNormal(x): Return a logical value indicating whether x is "normal" or not.

whichFirstNotNormal(x): Return NA if x is normal, or the smallest valid indice i in x for
which x[1:i] is not "normal".

26 RangesList-class

Author(s)

H. Pages

See Also

IRanges-class, IRanges-utils, IRanges-setops, XRanges-class, RangedData-class, IntervalTree-class,
update, as.matrix, as.data.frame, duplicated, rep

Examples

x <- IRanges(start=c(2:-1, 13:15), width=c(0:3, 2:0))
x
length(x)
start(x)
width(x)
end(x)
isEmpty(x)
as.matrix(x)
as.data.frame(x)

Subsetting:
x[4:2] # 3 ranges
x[-1] # 6 ranges
x[FALSE] # 0 range
x0 <- x[width(x) == 0] # 2 ranges
isEmpty(x0)

Use the replacement methods to resize the ranges:
width(x) <- width(x) * 2 + 1
x
end(x) <- start(x) # equivalent to width(x) <- 0
x
width(x) <- c(2, 0, 4)
x
start(x)[3] <- end(x)[3] - 2 # resize the 3rd range
x
duplicated(x)

Name the elements:
names(x)
names(x) <- c("range1", "range2")
x
x[is.na(names(x))] # 5 ranges
x[!is.na(names(x))] # 2 ranges

RangesList-class List of Ranges

Description

An extension of TypedList that holds only Ranges instances. Useful for storing ranges over a
set of spaces (e.g. chromosomes), each of which requires a separate Ranges instance.

RangesList-class 27

Accessors

In the code snippets below, x is a RangesList object. All accessors collapse over the spaces.

start(x): Get the starts of the ranges.

end(x): Get the ends of the ranges.

width(x): Get the widths of the ranges.

isEmpty(x): Gets a logical vector indicating which elements are empty (length zero).

Constructor

RangesList(...): Each Ranges in ... becomes an element in the new RangesList,
in the same order. This is analogous to the list constructor, except every argument in ...
must be derived from Ranges.

Coercion

In the code snippets below, x is a RangesList object.

as.data.frame(x, row.names = NULL, optional = FALSE): Coerces x to a data.frame.
Essentially the same as calling as.data.frame(unlist(x)).

as(from, "IRangesList"): Coerces from, a RangesList, to an IRangesList, re-
quiring that all Ranges elements are coerced to internal IRanges elements. This is a conve-
nient way to ensure that all Ranges have been imported into R (and that there is no unwanted
overhead when accessing them).

Author(s)

Michael Lawrence

Examples

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
named <- RangesList(one = range1, two = range2)
length(named) # 2
start(named) # same as start(c(range1, range2))
names(named) # "one" and "two"
named[[1]] # range1
unnamed <- RangesList(range1, range2)
names(unnamed) # NULL

same as list(range1, range2)
as.list(RangesList(range1, range2))

coerce to data.frame
as.data.frame(named)

28 RangesList-utils

RangesList-utils RangesList utility functions

Description

Utility functions for manipulating RangesList objects.

Usage

S4 method for signature 'RangesList':
gaps(x, start=NA, end=NA)
S4 method for signature 'RangesList':
reduce(x, with.inframe.attrib = FALSE)

Arguments

x A RangesList

start The start of the range over which to calculate the gaps. If NA, use the minimum
start position in the Ranges instance.

end The end of the range over which to calculate the gaps. If NA, use the maximum
end position in the Ranges instance.

with.inframe.attrib
Ignored.

Details

The gaps function takes the complement (the gaps) of each element in the list and returns the
result as a RangesList.

The reduce method merges (via reduce) all of the elements into a single Ranges instance and
returns the result as a length-one RangesList.

Value

A RangesList instance. For gaps, length is the same as that of x. For reduce, length is one.

Author(s)

Michael Lawrence, H. Pages

See Also

RangesList, reduce, gaps

Examples

'gaps'
range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
collection <- RangesList(one = range1, range2)

these two are the same

RangesMatching-class 29

RangesList(gaps(range1), gaps(range2))
gaps(collection)

'reduce'
range2 <- IRanges(start=c(45,20,1), end=c(100,80,5))
collection <- RangesList(one = range1, range2)

and these two are the same
reduce(collection)
RangesList(asNormalIRanges(IRanges(c(1,20), c(8, 100)), force=FALSE))

RangesMatching-class
Matchings between Ranges

Description

The RangesMatching class stores a set of matchings between the ranges in one Ranges in-
stance and the ranges in another. Currently, RangesMatching are used to represent the result of
an overlap query, though other matching operations are imaginable.

Details

The matchings between the ranges are stored as a Matrix-class instance. While that structure
is accessible, it is usually more convenient to coerce the RangesMatching instance to a more
amenable representation.

The as.matrix method coerces a RangesMatching to a two column matrix with one row
for each matching, where the value in the first column is the index of a range in the first (query)
Ranges and the index of the matched subject range is in the second column.

The as.table method counts the number of matchings for each query range and outputs the
counts as a table.

To transpose a RangesMatrix x, so that the subject and query are interchanged, call t(x). This
allows, for example, counting the number of subjects that matched using as.table.

Coercion

In the code snippets below, x is a RangesMatching object.

as.matrix(x): Coerces x to a two column integer matrix, with each row representing a match-
ing between a query index (first column) and subject index (second column).

as.table(x): counts the number of matchings for each query range in x and outputs the counts
as a table.

t(x): Interchange the query and subject in x, returns a transposed RangesMatching.

Accessors

matchMatrix(x): Get the Matrix-class, which may be a dense logical matrix (lgeMatrix-class)
or sparse non-zero pattern matrix (ngCMatrix-class), that encodes the matchings, with
columns corresponding to query ranges and rows corresponding to subject ranges. It is not
recommended to work with this matrix directly, unless the coercion methods above are inade-
quate.

30 Sequence-class

Author(s)

Michael Lawrence

See Also

overlap, which generates an instance of this class.

Examples

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
tree <- IntervalTree(subject)
matchings <- overlap(tree, query)

as.matrix(matchings)

if (interactive()) {
This code seems to not work anymore (because of a change in
the Matrix package?)
as.table(matchings) # hits per query
as.table(t(matchings)) # hits per subject

}

Sequence-class Sequence objects

Description

The Sequence virtual class is a general container for storing a sequence i.e. an ordered set of
elements. These containers come in two types: XSequence and XRle.

The XSequence virtual class is a general container for storing an "external sequence". The following
classes derive directly from the XSequence class.

The XRaw class is a container for storing an external sequence of bytes (stored as char values at the
C level).

The XInteger class is a container for storing an external sequence of integer values (stored as int
values at the C level).

The XNumeric class is a container for storing an external sequence of numeric values (stored as
double values at the C level).

Also the XString class from the Biostrings package

The XRle virtual class is a general container for storing an "external sequence" that is stored in a
run-time encoding format. The following classes derive directly from the XRle class.

The XRleInteger class is a container for storing an external run-length encoding of integers (stored
as char values at the C level).

The purpose of these containers is to provide a "pass by address" semantic and also to avoid the
overhead of copying the sequence data when a linear subsequence needs to be extracted.

SplitXDataFrame-class 31

Subsetting

In the code snippets below, x is a Sequence object.

subseq(x, start=NA, end=NA, width=NA): Extract the subsequence from x specified
by start, end and width. The supplied start/end/width values are solved by a call to
solveUserSEW(length(x), start=start, end=end, width=width) and there-
fore must be compliant with the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW
for the details).
A note about performance: subseq does NOT copy the sequence data of an XSequence
object. Hence it’s very efficient and is therefore the recommended way to extract a linear
subsequence (i.e. a set of consecutive elements) from an XSequence object. For example,
extracting a 100Mb subsequence from Human chromosome 1 (a 250Mb DNAString object)
with subseq is (almost) instantaneous and has (almost) no memory footprint (the cost in
time and memory does not depend on the length of the original sequence or on the length of
the subsequence to extract).

x[i, drop=TRUE]: Return a new Sequence object made of the selected elements (subscript i
must be an NA-free numeric vector specifying the positions of the elements to select). The
drop argument specifies whether or not to coerce the returned sequence to a standard vector.

rep(x, times): Return a new Sequence object made of the repeated elements.

See Also

Views-class, solveUserSEW, DNAString-class

Examples

x1 <- XInteger(12, c(-1:10))
x1
length(x1)

Subsetting
x2 <- XInteger(99999, sample(99, 99999, replace=TRUE) - 50)
x2
subseq(x2, start=10)
subseq(x2, start=-10)
subseq(x2, start=-20, end=-10)
subseq(x2, start=10, width=5)
subseq(x2, end=10, width=5)
subseq(x2, end=10, width=0)

x1[length(x1):1]
x1[length(x1):1, drop=FALSE]

SplitXDataFrame-class
Split XDataFrame

Description

Represents an XDataFrame split along some factor. Internally a list of XDataFrame instances
and extends TypedList. Asserts all elements have the same number and names of columns.

32 TypedList-class

Accessors

In the following code snippets, x is a SplitXDataFrame.

dim(x): Get the two element integer vector indicating the number of rows and columns over the
entire dataset.

dimnames(x): Get the list of two character vectors, the first holding the rownames (possibly
NULL) and the second the column names.

Constructor

SplitXDataFrame(...): Concatenates the XDataFrame instances in ... into a new
SplitXDataFrame. Note that all arguments should have the same number and names
of columns.

Coercion

In the following code snippets, x is a SplitXDataFrame.

as(from, "XDataFrame"): Coerces a SplitXDataFrame to an XDataFrame by com-
bining the rows of the elements. This essentially unsplits the XDataFrame.

unlist(x, recursive = TRUE, use.names = TRUE): Same as above, except spec-
ifying use.names to FALSE drops the row names. recursive is ignored.

as.data.frame(x, row.names=NULL, optional=FALSE, ...): Unsplits the XDataFrame
and coerces it to a data.frame, with the rownames specified in row.names. The optional
argument is ignored.

Note

The RangedData drove the development of this class. It is not clear if it is of general use and
might disappear.

Author(s)

Michael Lawrence

See Also

XDataFrame, RangedData, which uses a SplitXDataFrame to split the data by the spaces.

TypedList-class Typed Lists

Description

The virtual class TypedList is an emulation of an ordinary list, except all of the elements must
derive from a particular type. This is useful for validity checking and for implementing vectorized
type-specific operations.

TypedList-class 33

Details

In general, a TypedList may be treated as any ordinary list, except with regard to the element
type restriction.

The required element type is indicated by the elementClass slot, a scalar string naming the
class from which all elements must derive. This slot should never be set after initialization.

TypedList is a virtual class, so a subclass must be derived for a particular element type. This
turns out to be useful in almost all cases, as the explicit class can be used as the type of a slot in
a class that requires a homogeneous list of elements. Also, methods may be implemented for the
subclass that, for example, perform a vectorized operation specific to the element type. Using this
approach, the convention is for the prototype of the subclass to set the elementClass slot and to
leave it unchanged.

Subsetting

In the following code snippets, x is a TypedList object.

x[i]: Get a subset of x containing the elements indexed by i, which may be numeric, character,
logical, NULL or missing. The behavior is very similar to an ordinary list, except operations
that would insert NULL elements are only allowed if NULL is a valid element type.

x[[i]]: Get the element in x indexed by i, which may be a scalar number or string. The
behavior is nearly identical to that of an ordinary list.

x[[i]] <- value: Replace the element at index i (a scalar number or string) with value.
The behavior is very similar to that of an ordinary list, except value must be coercible
(and is coerced) to the required element class.

Accessors

In the following code snippets, x is a TypedList object.

length(x): Get the number of elements in x

names(x), names(x) <- value: Get or set the names of the elements in the list. This
behaves exactly the same as an ordinary list.

elementClass(x): Get the scalar string naming the class from which all elements must derive.

elements(x): Returns the internal list holding the elements. It is not recommended to
access the elements this way, as for some subclasses of TypedList this may be an internal
representation that is not consistent with what is extracted with, for example, the [[method.

Splitting and Combining

The following are methods for combining TypedList elements. In the signatures, x is a TypedList
object.

append(x, values, after = length(x)): Insert the TypedList values onto x
at the position given by after. values must have an elementClass that extends that of
x.

c(x, ..., recursive = FALSE): Appends the TypedList instances in ... onto the
end of x. All arguments must have an element class that extends that of x.

Note that the default split method happens to work on TypedList objects.

34 TypedList-class

Coercion

In the following code snippets, x is a TypedList object.

as.list(x), as(from, "list"): Coerces a TypedList to an ordinary list. Note that
this is preferred over the elements accessor for getting a list of the elements.

unlist(x): Combines all of the elements in this list into a single element via the c function and
returns the result. Will not work if the elements have no method for c. Returns NULL if there
are no elements in x, which may not be what is expected in many cases. Subclasses should
implement their own logic.

Applying

lapply(X, FUN, ...): Applies the function FUN over the TypedList X, with argu-
ments in ... passed on to FUN. Returns a list, with each element resulting from invoking
FUN on the corresponding element of X. Same semantics as the default lapply.

Author(s)

Michael Lawrence

See Also

RangesList for an example implementation

Examples

demonstrated on RangesList, as TypedList is virtual

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
collection <- RangesList(range1, range2)

names
names(collection) <- c("one", "two")
names(collection)
names(collection) <- NULL # clear names
names(collection)
names(collection) <- "one"
names(collection) # c("one", NA)

extraction
collection[[1]] # range1
collection[["1"]] # NULL, does not exist
collection[["one"]] # range1
collection[[NA_integer_]] # NULL

subsetting
collection[numeric()] # empty
collection[NULL] # empty
collection[] # identity
collection[c(TRUE, FALSE)] # first element
collection[2] # second element
collection[c(2,1)] # reversed
collection[-1] # drop first

Views-class 35

combining
col1 <- RangesList(one = range1, range2)
col2 <- RangesList(two = range2, one = range1)
col3 <- RangesList(range2)
append(col1, col2, 1)
append(col1, col2, -5)
c(col1, col2, col3)

get the starts of each Ranges
lapply(col1, start)

Views-class Views objects

Description

The Views virtual class is a general container for storing a set of views on an arbitrary Sequence
object, called the "subject".

More specific classes like the XIntegerViews container derive directly from the Views class.

The primary purpose of the Views virtual class is to introduce concepts and provide some facilities
shared by the more specific containers.

Usage

Constructor:

Views(subject, start=NA, end=NA, names=NULL)

Accessor:

subject(x)

View extraction:

S4 method for signature 'Views':
x[[i, j, ...]]

Utilities:

S4 method for signature 'Views':
restrict(x, start, end, keep.all.ranges=FALSE, use.names=TRUE)

trim(x, use.names=TRUE)

S4 method for signature 'Views':
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)

subviews(x, start=NA, end=NA, width=NA, use.names=TRUE)

S4 method for signature 'Views':
gaps(x, start=NA, end=NA)

36 Views-class

successiveViews(subject, width, gapwidth=0, from=1)

Arguments

subject The Sequence object on which to create the views.

start, end For Views, they must be integer vectors (eventually with NAs) specifying the
starting and ending positions of the views to create.
For restrict, they must be single integers specifying the restriction window.
For narrow and subviews, they can be single integers or NAs.
For gaps, they can be single integers or NAs. The gap extraction will be re-
stricted to the window specified by start and end. start=NA and end=NA
are interpreted as start=1 and end=length(subject(x)), respectively,
so, if start and end are not specified, then gaps are extracted from the entire
subject.

width For narrow and subviews, can be NA, a single integer, or an integer vector
of the same length as x.
For successiveViews, must be a vector of positive integers (with no NAs)
specifying the widths of the views to create.

names If not NULL, the names to assign to the views.

x A Views object.

i, j, ... Only one subscript is allowed (x[[i]]).

keep.all.ranges
Not supported for Views objects (must be FALSE).

use.names TRUE or FALSE. Should names be preserved?

gapwidth A single integer or an integer vector with one less element than the width
vector specifying the widths of the gaps separating one view from the next one.

from A single integer specifying the starting position of the first view.

Details

restrict will drop the views that don’t overlap with the window specified by start and end
and drop the parts of the remaining views that are outside the window.

[TODO: give some details about trim]

[TODO: give some details about subviews]

x[[i, exact=TRUE]] extracts the view selected by i. Subscript i can be a single integer or
a character string. It cannot be used for extracting a view that is "out of limits" (an error will be
raised). The returned object belongs to the same class as subject(x).

successiveViews returns a Views object containing the views on subject that have the
widths specified in the width vector and are separated by the gaps specified in gapwidth. The
first view starts at position from.

See Also

IRanges-class, IRanges-utils, Sequence, XSequence, XIntegerViews-class, XStringViews-class

Views-utils 37

Examples

Create a set of 4 views on an XInteger subject of length 10:
subject <- XInteger(10, 3:-6)
v1 <- Views(subject, start=4:1, end=4:7)

Extract the 2nd view:
v1[[2]]

'start' and 'end' are recycled
Views(subject, 2:1, 4)
Views(subject, 5:7,)
Views(subject, , 5:7)

Some views can be "out of limits"
v2 <- Views(subject, 4:-1, 6)
trim(v2)
subviews(v2, end=-2)

gaps()
v3 <- Views(subject, start=c(8, 3), end=c(14, 4))
gaps(v3)

Views on a big XInteger subject:
subject <- XInteger(99999, sample(99, 99999, replace=TRUE) - 50)
v4 <- Views(subject, start=1:99*1000, end=1:99*1001)
v4
v4[-1]
v4[[5]]

31 adjacent views:
successiveViews(subject, 40:10)

Views-utils Utility functions and numeric summary of Views of numerics

Description

The slice function creates a Views object that contains the indices where the data are within the
specified bounds.

The viewMins, viewMaxs, viewSums functions calculate the minimums, maximums, and
sums on views respectively.

Usage

slice(x, lower=-Inf, upper=Inf, ...)

viewMins(x, na.rm=FALSE)
viewMaxs(x, na.rm=FALSE)
viewSums(x, na.rm=FALSE)

38 Views-utils

Arguments

x An XRleInteger, XInteger object or an integer vector for slice.
An XRleIntegerViews, XIntegerViews object for viewMins, viewMaxs and
viewSums.

lower, upper The lower and upper bounds for the slice.

na.rm Logical indicating whether or not to include missing values in the results.

... Additional arguments to be passed to or from methods.

Details

The slice function creates views on XRleInteger or XInteger objects where the data are within
the specified bounds. This is useful for finding areas of absolute maxima (peaks), absolute minima
(troughs), or fluxuations within a specified limits.

The viewMins, viewMaxs, and viewSums functions provide efficient methods for calculating
the specified numeric summary by performing the looping in compiled code.

Value

An XRleIntegerViews or XIntegerViews object for slice.

An integer vector of length(x) containing the numeric summaries for the views.

Author(s)

P. Aboyoun

See Also

XRleIntegerViews-class, XIntegerViews-class

Examples

Views derived from vector
vec <- as.integer(c(19, 5, 0, 8, 5))
slice(vec, lower=5, upper=8)

set.seed(0)
vec <- sample(24)
vecViews <- slice(vec, lower=4, upper=16)
vecViews
viewMins(vecViews)
viewMaxs(vecViews)
viewSums(vecViews)

Views derived from coverage
x <- IRanges(start=c(1L, 9L, 4L, 1L, 5L, 10L),

width=c(5L, 6L, 3L, 4L, 3L, 3L))
coverage(x, start=1, end=15)

XDataFrame-class 39

XDataFrame-class External Data Frame

Description

The XDataFrame emulates the interface of data.frame, but it supports the storage of any type
of object as a column, as long as the length and [methods are implemented. The “X” in its
name indicates that it attempts to coerce its columns to external XSequence objects in a way that
is completely transparent to the user. This helps to avoid unncessary copying.

Details

On the whole, the XDataFrame behaves very similarly to data.frame, in terms of construction,
subsetting, splitting, combining, etc. The most notable exception is that the row names are optional.
This means calling rownames(x) will return NULL if there are no row names. Of course, it could
return seq_len(nrow(x)), but returning NULL informs, for example, combination functions
that no row names are desired (they are often a luxury when dealing with large data).

Accessors

In the following code snippets, x is an XDataFrame.

dim(x): Get the length two integer vector indicating in the first and second element the number
of rows and columns, respectively.

dimnames(x), dimnames(x) <- value: Get and set the two element list containing the
row names (character vector of length nrow(x) or NULL) and the column names (character
vector of length ncol(x)).

Subsetting

In the following code snippets, x is an XDataFrame.

x[i,j,drop]: Behaves very similarly to the [.data.frame method, except subsetting by
matrix indices is not supported. Due to temporary limitations in the subsetting XSequence
objects, indices containing NA’s are not yet supported.

x[[i]]: Behaves very similarly to the [[.data.frame method, except arguments j (why?)
and exact are not supported. Column name matching is always exact. Subsetting by matrices
is not supported.

x[[i]] <- value: Behaves very similarly to the [[<-.data.frame method, except the
argument j is not supported. An attempt is made to coerce value to a XSequence object.

Constructor

XDataFrame(..., row.names = NULL): Constructs an XDataFrame in similar fash-
ion to data.frame. Each argument in ... is coerced to an XDataFrame and combined
column-wise. No special effort is expended to automatically determine the row names from
the arguments. The row names should be given in row.names; otherwise, there are no row
names. This is by design, as row names are normally undesirable when data is large.

40 XDataFrame-class

Splitting and Combining

In the following code snippets, x is an XDataFrame.

split(x, f, drop = FALSE): Splits x into a SplitXDataFrame, according to f, drop-
ping elements corresponding to unrepresented levels if drop is TRUE.

rbind(...): Creates a new XDataFrame by combining the rows of the XDataFrame in-
stances in Very similar to rbind.data.frame, except in the handling of row names.
If all elements have row names, they are concatenated and made unique. Otherwise, the result
does not have row names. Currently, factors are not handled well (their levels are dropped).
This is not a high priority until there is an XFactor class.

cbind(...): Creates a new XDataFrame by combining the columns of the XDataFrame
instances in Very similar to cbind.data.frame, except row names, if any, are
dropped. Consider the XDataFrame as an alternative that allows one to specify row names.

Coercion

as(from, "XDataFrame"): By default, constructs a new XDataFrame with from as its
only column. If from is a matrix or data.frame, all of its columns are placed into the
new XDataFrame. In either case, there is an attempt to coerce columns to XSequence
before inserting them into the XDataFrame. Note that for the XDataFrame to behave
correctly, each column object must support element-wise subsetting via the [method and
return the number of elements with length. It is recommended to use the XDataFrame
constructor, rather than this interface.

as.data.frame(x, row.names=NULL, optional=FALSE): Coerces x, an XDataFrame,
to a data.frame. Each column is coerced to a vector and stored as a column in the
data.frame. If row.names is NULL, they are retrieved from x, if it has any. Otherwise,
they are inferred by the data.frame constructor.

as(from, "data.frame"): Coerces a XDataFrame to a data.frame by calling as.data.frame(from).

Note

In the future, the general data frame functionality will probably be moved to a DataFrame class.
XDataFrame will derive from DataFrame and encapsulate the behavior of attempting to coerce
or even requiring columns to be XSequence.

Author(s)

Michael Lawrence

See Also

RangedData, which makes heavy use of this class.

Examples

score <- c(1L, 3L, NA)
counts <- c(10L, 2L, NA)
row.names <- c("one", "two", "three")

xdf <- XDataFrame(score) # single column
xdf[["score"]]
xdf <- XDataFrame(score, row.names = row.names) #with row names
rownames(xdf)

XDataFrame-class 41

xdf <- XDataFrame(vals = score) # explicit naming
xdf[["vals"]]

a data.frame
sw <- XDataFrame(swiss)
as.data.frame(sw) # swiss, without row names
now with row names
sw <- XDataFrame(swiss, row.names = rownames(swiss))
as.data.frame(sw) # swiss

subsetting

sw[] # identity subset
sw[,] # same

sw[NULL] # no columns
sw[,NULL] # no columns
sw[NULL,] # no rows

select columns
sw[1:3]
sw[,1:3] # same as above
sw[,"Fertility"]
sw[,c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)]

select rows and columns
sw[4:5, 1:3]

sw[1] # one-column XDataFrame
the same
sw[, 1, drop = FALSE]
sw[, 1] # a (unnamed) vector
sw[[1]] # the same
sw[["Fertility"]]

sw[["Fert"]] # should return 'NULL'

sw[1,] # a one-row XDataFrame
sw[1,, drop=TRUE] # a list

duplicate row, unique row names are created
sw[c(1, 1:2),]

indexing by row names
sw["Courtelary",]
subsw <- sw[1:5,1:4]
subsw["C",] # partially matches

row and column names
cn <- paste("X", seq_len(ncol(swiss)), sep = ".")
colnames(sw) <- cn
colnames(sw)
rn <- seq(nrow(sw))
rownames(sw) <- rn
rownames(sw)

42 XDataFrame-utils

column replacement

xdf[["counts"]] <- counts
xdf[["counts"]]
xdf[[3]] <- score
xdf[["X"]]
xdf[[3]] <- NULL # deletion

split

sw <- XDataFrame(swiss)
swsplit <- split(sw, sw[["Education"]])

rbind

do.call("rbind", as.list(swsplit))

cbind

cbind(XDataFrame(score), XDataFrame(counts))

XDataFrame-utils XDataFrame utility functions

Description

Utility functions for manipulating XDataFrame objects.

Usage

S4 method for signature 'expressionORlanguage,
XDataFrame':
eval(expr, envir, enclos = parent.frame())

Arguments

expr The expression, call, or name to be evaluated.

envir The XDataFrame object in which to evaluate expr.

enclos The environment in which to look for symbols that do not exist in the envi-
ronment formed from XDataFrame.

Details

The eval method converts the XDataFrame object specified in envir to an environmnent,
with enclos as its parent, and then evaluates expr within that environment. As when evaluat-
ing within an ordinary data.frame, the environment formed from an XDataFrame contains a
symbol for each column name which refers to the object stored in that column.

The objects are not actually copied into the environment. Rather, they are dynamically bound using
makeActiveBinding. This prevents unnecessary copying of the data from the external vectors
into R vectors. The values are cached, so that the data is not copied every time the symbol is
accessed.

XIntegerViews-class 43

Value

The result of expression evaluation.

Author(s)

Michael Lawrence

See Also

FilterRules objects, which can be evaluated on a XDataFrame, and the base eval function.

Examples

score <- c(10L, 2L, NA)
rd <- XDataFrame(score)
evalq(score > 3, rd)

XIntegerViews-class
The XIntegerViews class

Description

The XIntegerViews class is the basic container for storing a set of views (start/end locations) on the
same XInteger object.

Details

An XIntegerViews object contains a set of views (start/end locations) on the same XInteger object
called "the subject integer vector" or simply "the subject". Each view is defined by its start and end
locations: both are integers such that start <= end. An XIntegerViews object is in fact a particular
case of a Views object (the XIntegerViews class contains the Views class) so it can be manipulated
in a similar manner: see ?Views for more information. Note that two views can overlap and that a
view can be "out of limits" i.e. it can start before the first element of the subject or/and end after its
last element.

Other methods

In the code snippets below, x, object, e1 and e2 are XIntegerViews objects, and i can be a
numeric or logical vector.

x[[i]]: Extract a view as an XInteger object. i must be a single numeric value (a numeric
vector of length 1). Can’t be used for extracting a view that is "out of limits" (raise an error).
The returned object has the same XInteger subtype as subject(x).

e1 == e2: A vector of logicals indicating the result of the view by view comparison. The views
in the shorter of the two XIntegerViews object being compared are recycled as necessary.

e1 != e2: Equivalent to !(e1 == e2).

as.integer(x, use.names, check.limits): Convert x to a list of integer vectors of
the same length as x. Can’t be used if x has "out of limits" views (raise an error).

44 XRanges-class

Author(s)

P. Aboyoun

See Also

Views-class, XInteger-class, Views-utils

Examples

One standard way to create an XIntegerViews object is to use
the Views() constructor:
subject <- XInteger(6, c(45, 67, 84, 67, 45, 78))
v4 <- Views(subject, 3:0, 5:8)
v4
subject(v4)
length(v4)
start(v4)
end(v4)
width(v4)

Attach a comment to views #3 and #4:
names(v4)[3:4] <- "out of limits"
names(v4)

A more programatical way to "tag" the "out of limits" views:
names(v4)[start(v4) < 1 | length(subject(v4)) < end(v4)] <- "out of limits"
or just:
names(v4)[length(subject(v4)) < width(v4)] <- "out of limits"

Extract a view as an XInteger object:
v4[[2]]

It is an error to try to extract an "out of limits" view:
#v4[[3]] # Error!

Here the first view doesn't even overlap with the subject:
Views(XInteger(6, c(97, 97, 97, 45, 45, 98)), -3:4, -3:4 + c(3:6, 6:3))

XRanges-class External Ranges

Description

The XRanges class is meant to be the virtual parent for all Ranges derivatives that exist externally
from R, such as search trees, databases, etc. It is the external analog of the internal IRanges.

Details

The primary requirement for a XRanges implementation is that it is coercible to IRanges, so that
the data may be imported into R. Several of the most important accessors (start, end, width)
and utilities (reduce, gaps) have default implementations for XRanges instances that simply
coerce the XRanges to an IRanges and delegate. Subclasses are responsible for optimized im-
plementations of those methods and should generally attempt to implement as much of the Ranges
API as is feasible.

XRleIntegerViews-class 45

Author(s)

Michael Lawrence

See Also

The internal IRanges; IntervalTree for an implementation.

XRleIntegerViews-class
The XRleIntegerViews class

Description

The XRleIntegerViews class is the basic container for storing a set of views (start/end locations) on
the same XRleInteger object.

Details

An XRleIntegerViews object contains a set of views (start/end locations) on the same XRleInteger
object called "the subject integer vector" or simply "the subject". Each view is defined by its start
and end locations: both are integers such that start <= end. An XRleIntegerViews object is in fact
a particular case of a Views object (the XRleIntegerViews class contains the Views class) so it can
be manipulated in a similar manner: see ?Views for more information. Note that two views can
overlap and that a view can be "out of limits" i.e. it can start before the first element of the subject
or/and end after its last element.

Other methods

In the code snippets below, x, object, e1 and e2 are XRleIntegerViews objects, and i can be a
numeric or logical vector.

x[[i]]: Extract a view as an XRleInteger object. i must be a single numeric value (a numeric
vector of length 1). Can’t be used for extracting a view that is "out of limits" (raise an error).
The returned object has the same XRleInteger subtype as subject(x).

e1 == e2: A vector of logicals indicating the result of the view by view comparison. The views
in the shorter of the two XRleIntegerViews object being compared are recycled as necessary.

e1 != e2: Equivalent to !(e1 == e2).

as.integer(x, use.names, check.limits): Convert x to a list of integer vectors of
the same length as x. Can’t be used if x has "out of limits" views (raise an error).

Author(s)

P. Aboyoun

See Also

Views-class, XRleInteger-class, Views-utils

46 coverage

Examples

One standard way to create an XIntegerViews object is to use
the Views() constructor:
subject <- XRleInteger(rep(c(3L, 2L, 18L, 0L), c(3,2,1,5)))
myViews <- Views(subject, 3:0, 5:8)
myViews
subject(myViews)
length(myViews)
start(myViews)
end(myViews)
width(myViews)
myViews[[2]]

Here the first view doesn't even overlap with the subject:
Views(XRleInteger(as.integer(c(97, 97, 97, 45, 45, 98))), -3:4, -3:4 + c(3:6, 6:3))

coverage Coverage across a set of ranges

Description

Counts the number of times a position is represented in a set of ranges.

Usage

coverage(x, start=NA, end=NA, ...)
S4 method for signature 'IRanges':
coverage(x, start=NA, end=NA, weight=1L)

Arguments

x An IRanges or MaskCollection object.

start A single integer specifying the position in x where to start the extraction of the
coverage.

end A single integer specifying the position in x where to end the extraction of the
coverage.

weight An integer vector specifying how much each element in x counts.

... Further arguments to be passed to or from other methods.

Value

An XRleInteger object representing the coverage of x in the interval specified by the start and
end arguments. An integer value called the "coverage" can be associated to each position in x,
indicating how many times this position is covered by the ranges stored in x. Note that the positions
in the returned XInteger object are to be interpreted as relative to the interval specified by the start
and end arguments.

See Also

XRleInteger-class, IRanges-class, MaskCollection-class

read.Mask 47

Examples

x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),
width=c(5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))

coverage(x, start=-6, end=20) # 'start' and 'end' must be specified for
an IRanges object.

coverage(shift(x, 2), start=-6, end=20)
coverage(restrict(x, 1, 10), start=-6, end=20)
coverage(reduce(x), start=-6, end=20)
coverage(gaps(x, start=-6, end=20), start=-6, end=20)

mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
coverage(mymasks)

read.Mask Read a mask from a file

Description

read.agpMask and read.gapMask extract the AGAPS mask from an NCBI "agp" file or a
UCSC "gap" file, respectively.

read.liftMask extracts the AGAPS mask from a UCSC "lift" file (i.e. a file containing offsets
of contigs within sequences).

read.rmMask extracts the RM mask from a RepeatMasker .out file.

read.trfMask extracts the TRF mask from a Tandem Repeats Finder .bed file.

Usage

read.agpMask(file, seqname="?", mask.width=NA, gap.types=NULL, use.gap.types=FALSE)
read.gapMask(file, seqname="?", mask.width=NA, gap.types=NULL, use.gap.types=FALSE)
read.liftMask(file, seqname="?", mask.width=NA)
read.rmMask(file, seqname="?", mask.width=NA, use.IDs=FALSE)
read.trfMask(file, seqname="?", mask.width=NA)

Arguments

file Either a character string naming a file or a connection open for reading.

seqname The name of the sequence for which the mask must be extracted. If no sequence
is specified (i.e. seqname="?") then an error is raised and the sequence names
found in the file are displayed. If the file doesn’t contain any information for
the specified sequence, then a warning is issued and an empty mask of width
mask.width is returned.

mask.width The width of the mask to return i.e. the length of the sequence this mask will
be put on. See ¿MaskCollection-class‘ for more information about the
width of a MaskCollection object.

48 read.Mask

gap.types NULL or a character vector containing gap types. Use this argument to filter the
assembly gaps that are to be extracted from the "agp" or "gap" file based on their
type. Most common gap types are "contig", "clone", "centromere",
"telomere", "heterochromatin", "short_arm" and "fragment".
With gap.types=NULL, all the assembly gaps described in the file are ex-
tracted. With gap.types="?", an error is raised and the gap types found in
the file for the specified sequence are displayed.

use.gap.types
Whether or not the gap types provided in the "agp" or "gap" file should be used
to name the ranges constituing the returned mask. See ¿IRanges-class‘
for more information about the names of an IRanges object.

use.IDs Whether or not the repeat IDs provided in the RepeatMasker .out file should
be used to name the ranges constituing the returned mask. See ¿IRanges-
class‘ for more information about the names of an IRanges object.

See Also

MaskCollection-class, IRanges-class

Examples

A. Extract a mask of assembly gaps ("AGAPS" mask) with read.agpMask()

Note: The hs_b36v3_chrY.agp file was obtained by downloading,
extracting and renaming the hs_ref_chrY.agp.gz file from
##
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/
hs_ref_chrY.agp.gz 5 KB 24/03/08 04:33:00 PM
##
on May 9, 2008.

chrY_length <- 57772954
file1 <- system.file("extdata", "hs_b36v3_chrY.agp", package="IRanges")
mask1 <- read.agpMask(file1, seqname="chrY", mask.width=chrY_length,

use.gap.types=TRUE)
mask1
mask1[[1]]

mask11 <- read.agpMask(file1, seqname="chrY", mask.width=chrY_length,
gap.types=c("centromere", "heterochromatin"))

mask11[[1]]

B. Extract a mask of assembly gaps ("AGAPS" mask) with read.liftMask()

Note: The hg18liftAll.lft file was obtained by downloading,
extracting and renaming the liftAll.zip file from
##
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/
liftAll.zip 03-Feb-2006 11:35 5.5K
##
on May 8, 2008.

file2 <- system.file("extdata", "hg18liftAll.lft", package="IRanges")

reverse 49

mask2 <- read.liftMask(file2, seqname="chr1")
mask2
if (interactive()) {

contigs 7 and 8 for chrY are adjacent
read.liftMask(file2, seqname="chrY")

displays the sequence names found in the file
read.liftMask(file2)

specify an unknown sequence name
read.liftMask(file2, seqname="chrZ", mask.width=300)

}

C. Extract a RepeatMasker ("RM") or Tandem Repeats Finder ("TRF")
mask with read.rmMask() or read.trfMask()

Note: The ce2chrM.fa.out and ce2chrM.bed files were obtained by
downloading, extracting and renaming the chromOut.zip and
chromTrf.zip files from
##
http://hgdownload.cse.ucsc.edu/goldenPath/ce2/bigZips/
chromOut.zip 21-Apr-2004 09:05 2.6M
chromTrf.zip 21-Apr-2004 09:07 182K
##
on May 7, 2008.

Before you can extract a mask with read.rmMask() or read.trfMask(), you
need to know the length of the sequence that you're going to put the
mask on:
if (interactive()) {

library(BSgenome.Celegans.UCSC.ce2)
chrM_length <- seqlengths(Celegans)[["chrM"]]

Read the RepeatMasker .out file for chrM in ce2:
file3 <- system.file("extdata", "ce2chrM.fa.out", package="IRanges")
RMmask <- read.rmMask(file3, seqname="chrM", mask.width=chrM_length)
RMmask

Read the Tandem Repeats Finder .bed file for chrM in ce2:
file4 <- system.file("extdata", "ce2chrM.bed", package="IRanges")
TRFmask <- read.trfMask(file4, seqname="chrM", mask.width=chrM_length)
TRFmask
desc(TRFmask) <- paste(desc(TRFmask), "[period<=12]")
TRFmask

Put the 2 masks on chrM:
chrM <- Celegans$chrM
masks(chrM) <- RMmask # this would drop all current masks, if any
masks(chrM) <- append(masks(chrM), TRFmask)
chrM

}

reverse Reverse ranges

50 solveUserSEW

Description

Reverses a set of ranges.

Usage

reverse(x, ...)

Arguments

x An IRanges, NormalIRanges, or MaskCollection object.

... Additional arguments to be passed to or from methods.

Details

Reverses the order of the ranges.

Value

An object of the same class and length as the original object.

See Also

IRanges-class, NormalIRanges-class, MaskCollection-class

Examples

x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),
width=c(5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))

reverse(x, start=-6, end=20) # 'start' and 'end' must be specified for
an IRanges object.

reverse(shift(x, 2), start=-6, end=20)
reverse(restrict(x, 1, 10), start=-6, end=20)
reverse(reduce(x), start=-6, end=20)
reverse(gaps(x, start=-6, end=20), start=-6, end=20)

mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
reverse(mymasks)

solveUserSEW The SEW (Start/End/Width) interface

Description

solveUserSEW is a utility function that solves a set of user-supplied start/end/width values.

Usage

solveUserSEW(refwidths, start=NA, end=NA, width=NA,
translate.nonpositive.coord=TRUE,
allow.nonnarrowing=FALSE)

solveUserSEW 51

Arguments

refwidths Vector of non-negative integers containing the reference widths.
start, end, width

Vectors of integers, eventually with NAs, containing the set of user-supplied
start/end/width values.

translate.nonpositive.coord, allow.nonnarrowing
TRUE or FALSE.

Details

start, end and width must have the same number of elements as, or less elements than,
refwidths. In the latter case, they are expanded cyclically to the length of refwidths (pro-
vided none are of zero length). After this expansion, each row in the 3-column matrix obtained by
binding those 3 vectors together must contain at least one NA (otherwise an error is returned).

Then each row is "solved" i.e. the 2 following transformations are performed (i is the indice
of the row): (1) if translate.nonpositive.coord is TRUE then a non-positive value of
start[i] or end[i] is considered to be a -refwidths[i]-based coordinate so refwidths[i]+1
is added to it to make it 1-based; (2) the NAs in the row are treated as unknowns which values are
deduced from the known values in the row and from refwidths[i].

The exact rules for (2) are the following. Rule (2a): if the row contains at least 2 NAs, then
width[i] must be one of them (otherwise an error is returned), and if start[i] is one of them
it is replaced by 1, and if end[i] is one of them it is replaced by refwidths[i], and finally
width[i] is replaced by end[i] - start[i] + 1. Rule (2b): if the row contains only
1 NA, then it is replaced by the solution of the width[i] == end[i] - start[i] + 1
equation.

Finally, the set of solved rows is returned as an IRanges object.

Value

An IRanges object (with the same number of elements as refwidths) representing the set of
solved start/end/width values, or an error if either (1) the set of user-supplied start/end/width values
is invalid or (2) allow.nonnarrowing is FALSE and the ranges represented by the solved
start/end/width values are not narrowing the ranges represented by the user-supplied start/end/width
values.

Author(s)

H. Pages

See Also

IRanges-class, narrow

Examples

refwidths <- c(5:3, 6:7)
refwidths

solveUserSEW(refwidths)
solveUserSEW(refwidths, start=4)
solveUserSEW(refwidths, end=3, width=2)
solveUserSEW(refwidths, start=-3)
solveUserSEW(refwidths, start=-3, width=2)

52 solveUserSEW

solveUserSEW(refwidths, end=-4)

The start/end/width arguments are expanded cyclically
solveUserSEW(refwidths, start=c(3, -4, NA), end=c(-2, NA))

Index

!=,Sequence,Sequence-method
(Sequence-class), 30

!=,XInteger,XIntegerViews-method
(XIntegerViews-class), 43

!=,XIntegerViews,XInteger-method
(XIntegerViews-class), 43

!=,XIntegerViews,XIntegerViews-method
(XIntegerViews-class), 43

!=,XIntegerViews,integer-method
(XIntegerViews-class), 43

!=,XRleInteger,XRleIntegerViews-method
(XRleIntegerViews-class),
45

!=,XRleIntegerViews,XRleInteger-method
(XRleIntegerViews-class),
45

!=,XRleIntegerViews,XRleIntegerViews-method
(XRleIntegerViews-class),
45

!=,XRleIntegerViews,integer-method
(XRleIntegerViews-class),
45

!=,integer,XIntegerViews-method
(XIntegerViews-class), 43

!=,integer,XRleIntegerViews-method
(XRleIntegerViews-class),
45

∗Topic algebra
Views-utils, 37

∗Topic arith
Views-utils, 37

∗Topic classes
FilterRules-class, 1
GenomicData-class, 3
IntervalTree-class, 11
IRanges-class, 5
IRangesList-class, 10
MaskCollection-class, 13
RangedData-class, 18
RangedDataList-class, 23
Ranges-class, 24
RangesList-class, 26
RangesMatching-class, 29

rdapply, 15
Sequence-class, 30
SplitXDataFrame-class, 31
TypedList-class, 32
XDataFrame-class, 39
XIntegerViews-class, 43
XRanges-class, 44
XRleIntegerViews-class, 45

∗Topic manip
read.Mask, 47
reverse, 49

∗Topic methods
coverage, 46
FilterRules-class, 1
GenomicData-class, 3
IntervalTree-class, 11
IRanges-class, 5
IRangesList-class, 10
MaskCollection-class, 13
RangedData-class, 18
Ranges-class, 24
RangesList-class, 26
RangesMatching-class, 29
rdapply, 15
reverse, 49
Sequence-class, 30
SplitXDataFrame-class, 31
TypedList-class, 32
Views-class, 35
Views-utils, 37
XDataFrame-class, 39
XIntegerViews-class, 43
XRanges-class, 44
XRleIntegerViews-class, 45

∗Topic utilities
IRanges-setops, 6
IRanges-utils, 7
RangedData-utils, 22
RangesList-utils, 28
solveUserSEW, 50
XDataFrame-utils, 42

==,XInteger,XInteger-method
(Sequence-class), 30

53

54 INDEX

==,XInteger,XIntegerViews-method
(XIntegerViews-class), 43

==,XIntegerViews,XInteger-method
(XIntegerViews-class), 43

==,XIntegerViews,XIntegerViews-method
(XIntegerViews-class), 43

==,XIntegerViews,integer-method
(XIntegerViews-class), 43

==,XNumeric,XNumeric-method
(Sequence-class), 30

==,XRle,XRle-method
(Sequence-class), 30

==,XRleInteger,XRleIntegerViews-method
(XRleIntegerViews-class),
45

==,XRleIntegerViews,XRleInteger-method
(XRleIntegerViews-class),
45

==,XRleIntegerViews,XRleIntegerViews-method
(XRleIntegerViews-class),
45

==,XRleIntegerViews,integer-method
(XRleIntegerViews-class),
45

==,integer,XIntegerViews-method
(XIntegerViews-class), 43

==,integer,XRleIntegerViews-method
(XRleIntegerViews-class),
45

[,FilterRules,ANY,ANY,ANY-method
(FilterRules-class), 1

[,IRanges,ANY,ANY,ANY-method
(IRanges-class), 5

[,MaskCollection,ANY,ANY,ANY-method
(MaskCollection-class), 13

[,RangedData,ANY,ANY,ANY-method
(RangedData-class), 18

[,TypedList,ANY,ANY,ANY-method
(TypedList-class), 32

[,XDataFrame,ANY,ANY,ANY-method
(XDataFrame-class), 39

[,XInteger,ANY,ANY,ANY-method
(Sequence-class), 30

[,XNumeric,ANY,ANY,ANY-method
(Sequence-class), 30

[,XRle,ANY,ANY,ANY-method
(Sequence-class), 30

[.data.frame, 39
[<-,MaskCollection,ANY,ANY,ANY-method

(MaskCollection-class), 13
[<-,RangedData,ANY,ANY,ANY-method

(RangedData-class), 18

[<-,Ranges,ANY,ANY,ANY-method
(Ranges-class), 24

[<-,Sequence,ANY,ANY,ANY-method
(Sequence-class), 30

[<-,TypedList,ANY,ANY,ANY-method
(TypedList-class), 32

[[,MaskCollection-method
(MaskCollection-class), 13

[[,RangedData-method
(RangedData-class), 18

[[,TypedList-method
(TypedList-class), 32

[[,Views-method (Views-class), 35
[[,XDataFrame-method

(XDataFrame-class), 39
[[,XIntegerViews-method

(XIntegerViews-class), 43
[[,XRleIntegerViews-method

(XRleIntegerViews-class),
45

[[.data.frame, 39
[[<-,FilterRules-method

(FilterRules-class), 1
[[<-,MaskCollection-method

(MaskCollection-class), 13
[[<-,RangedData-method

(RangedData-class), 18
[[<-,TypedList-method

(TypedList-class), 32
[[<-,Views-method (Views-class),

35
[[<-,XDataFrame-method

(XDataFrame-class), 39
[[<-,XIntegerViews-method

(XIntegerViews-class), 43
[[<-,XRleIntegerViews-method

(XRleIntegerViews-class),
45

[[<-.data.frame, 39
%in%,Ranges,Ranges-method

(IntervalTree-class), 11

active (MaskCollection-class), 13
active,FilterRules-method

(FilterRules-class), 1
active,MaskCollection-method

(MaskCollection-class), 13
active<- (MaskCollection-class),

13
active<-,FilterRules-method

(FilterRules-class), 1
active<-,MaskCollection-method

(MaskCollection-class), 13

INDEX 55

alphabetFrequency, 13, 15
annotation (RangedData-class), 18
annotation,RangedData-method

(RangedData-class), 18
append,FilterRules,FilterRules-method

(FilterRules-class), 1
append,MaskCollection,MaskCollection-method

(MaskCollection-class), 13
append,TypedList,TypedList-method

(TypedList-class), 32
applyFun (rdapply), 15
applyFun,RDApplyParams-method

(rdapply), 15
applyFun<- (rdapply), 15
applyFun<-,RDApplyParams-method

(rdapply), 15
applyParams (rdapply), 15
applyParams,RDApplyParams-method

(rdapply), 15
applyParams<- (rdapply), 15
applyParams<-,RDApplyParams-method

(rdapply), 15
Arith,integer,XRleInteger-method

(Sequence-class), 30
Arith,XRleInteger,integer-method

(Sequence-class), 30
Arith,XRleInteger,XRleInteger-method

(Sequence-class), 30
as.data.frame, 25, 26
as.data.frame,RangedData-method

(RangedData-class), 18
as.data.frame,Ranges-method

(Ranges-class), 24
as.data.frame,RangesList-method

(RangesList-class), 26
as.data.frame,SplitXDataFrame-method

(SplitXDataFrame-class), 31
as.data.frame,XDataFrame-method

(XDataFrame-class), 39
as.integer,XInteger-method

(Sequence-class), 30
as.integer,XIntegerViews-method

(XIntegerViews-class), 43
as.integer,XRleInteger-method

(Sequence-class), 30
as.integer,XRleIntegerViews-method

(XRleIntegerViews-class),
45

as.list,TypedList-method
(TypedList-class), 32

as.matrix, 26
as.matrix,Ranges-method

(Ranges-class), 24
as.matrix,RangesMatching-method

(RangesMatching-class), 29
as.numeric,XNumeric-method

(Sequence-class), 30
as.table,RangesMatching-method

(RangesMatching-class), 29
as.vector,XInteger,missing-method

(Sequence-class), 30
as.vector,XNumeric,missing-method

(Sequence-class), 30
as.vector,XRleInteger,missing-method

(Sequence-class), 30
asNormalIRanges (IRanges-utils), 7

c,FilterRules-method
(FilterRules-class), 1

c,GenomicData-method
(GenomicData-class), 3

c,IRanges-method (IRanges-class),
5

c,RangedData-method
(RangedData-class), 18

c,TypedList-method
(TypedList-class), 32

cbind (XDataFrame-class), 39
cbind,XDataFrame-method

(XDataFrame-class), 39
cbind.data.frame, 40
chrom (GenomicData-class), 3
chrom,GenomicData-method

(GenomicData-class), 3
class:IRanges (IRanges-class), 5
class:MaskCollection

(MaskCollection-class), 13
class:NormalIRanges

(IRanges-class), 5
class:Ranges (Ranges-class), 24
class:Sequence (Sequence-class),

30
class:SequenceORvector

(Sequence-class), 30
class:Views (Views-class), 35
class:XInteger (Sequence-class),

30
class:XIntegerViews

(XIntegerViews-class), 43
class:XNumeric (Sequence-class),

30
class:XRaw (Sequence-class), 30
class:XRle (Sequence-class), 30
class:XRleInteger

(Sequence-class), 30

56 INDEX

class:XRleIntegerViews
(XRleIntegerViews-class),
45

class:XSequence (Sequence-class),
30

coerce,ANY,XDataFrame-method
(XDataFrame-class), 39

coerce,data.frame,XDataFrame-method
(XDataFrame-class), 39

coerce,integer,XDataFrame-method
(XDataFrame-class), 39

coerce,integer,XInteger-method
(Sequence-class), 30

coerce,integer,XRleInteger-method
(Sequence-class), 30

coerce,integer,XSequence-method
(Sequence-class), 30

coerce,IntervalTree,IRanges-method
(IntervalTree-class), 11

coerce,IRanges,IntervalTree-method
(IntervalTree-class), 11

coerce,IRanges,NormalIRanges-method
(IRanges-utils), 7

coerce,IRangesList,NormalIRanges-method
(IRangesList-class), 10

coerce,MaskCollection,NormalIRanges-method
(MaskCollection-class), 13

coerce,matrix,XDataFrame-method
(XDataFrame-class), 39

coerce,numeric,XNumeric-method
(Sequence-class), 30

coerce,numeric,XSequence-method
(Sequence-class), 30

coerce,RangedData,XDataFrame-method
(RangedData-class), 18

coerce,Ranges,IntervalTree-method
(IntervalTree-class), 11

coerce,RangesList,IRangesList-method
(RangesList-class), 26

coerce,SplitXDataFrame,XDataFrame-method
(SplitXDataFrame-class), 31

coerce,TypedList,list-method
(TypedList-class), 32

coerce,Views,NormalIRanges-method
(Views-class), 35

coerce,XDataFrame,data.frame-method
(XDataFrame-class), 39

coerce,XRle,GenomicData-method
(GenomicData-class), 3

coerce,XRle,RangedData-method
(RangedData-class), 18

coverage, 46

coverage,IRanges-method
(coverage), 46

coverage,MaskCollection-method
(coverage), 46

data.frame, 39
desc (MaskCollection-class), 13
desc,MaskCollection-method

(MaskCollection-class), 13
desc<- (MaskCollection-class), 13
desc<-,MaskCollection-method

(MaskCollection-class), 13
dim,RangedData-method

(RangedData-class), 18
dim,SplitXDataFrame-method

(SplitXDataFrame-class), 31
dim,XDataFrame-method

(XDataFrame-class), 39
dimnames,RangedData-method

(RangedData-class), 18
dimnames,SplitXDataFrame-method

(SplitXDataFrame-class), 31
dimnames,XDataFrame-method

(XDataFrame-class), 39
dimnames<-,XDataFrame,ANY-method

(XDataFrame-class), 39
DNAString, 31
DNAString-class, 31
duplicated, 25, 26
duplicated,Ranges-method

(Ranges-class), 24

elementClass (TypedList-class), 32
elementClass,TypedList-method

(TypedList-class), 32
elements (TypedList-class), 32
elements,TypedList-method

(TypedList-class), 32
end,RangedData-method

(RangedData-class), 18
end,Ranges-method (Ranges-class),

24
end,RangesList-method

(RangesList-class), 26
end,XRanges-method

(XRanges-class), 44
end<- (Ranges-class), 24
end<-,IRanges-method

(IRanges-class), 5
eval, 23, 43
eval,expressionORlanguage,RangedData-method

(RangedData-utils), 22

INDEX 57

eval,expressionORlanguage,XDataFrame-method
(XDataFrame-utils), 42

eval,FilterRules,ANY-method
(FilterRules-class), 1

FilterRules, 16, 17, 23, 43
FilterRules (FilterRules-class), 1
filterRules (rdapply), 15
filterRules,RDApplyParams-method

(rdapply), 15
FilterRules-class, 1
filterRules<- (rdapply), 15
filterRules<-,RDApplyParams-method

(rdapply), 15
first (Ranges-class), 24
first,Ranges-method

(Ranges-class), 24

gaps, 24, 28
gaps (IRanges-utils), 7
gaps,IRanges-method

(IRanges-utils), 7
gaps,MaskCollection-method

(MaskCollection-class), 13
gaps,RangesList-method

(RangesList-utils), 28
gaps,Views-method (Views-class),

35
gaps,XRanges-method

(XRanges-class), 44
genome (GenomicData-class), 3
genome,GenomicData-method

(GenomicData-class), 3
GenomicData (GenomicData-class), 3
GenomicData-class, 3

intersect,IRanges,IRanges-method
(IRanges-setops), 6

IntervalTree, 24, 45
IntervalTree

(IntervalTree-class), 11
IntervalTree-class, 11, 26
intToAdjacentRanges

(IRanges-utils), 7
intToRanges (IRanges-utils), 7
IRanges, 6–12, 14, 24, 25, 44–46, 48, 50, 51
IRanges (IRanges-class), 5
IRanges-class, 48
IRanges-class, 5, 7, 9, 26, 36, 46, 48, 50,

51
IRanges-setops, 5, 6, 9, 26
IRanges-utils, 5, 7, 7, 24, 26, 36
IRangesList, 27

IRangesList (IRangesList-class),
10

IRangesList-class, 10
is.array,XDataFrame-method

(XDataFrame-class), 39
isEmpty (Ranges-class), 24
isEmpty,MaskCollection-method

(MaskCollection-class), 13
isEmpty,NormalIRanges-method

(IRanges-class), 5
isEmpty,Ranges-method

(Ranges-class), 24
isEmpty,RangesList-method

(RangesList-class), 26
isNormal (Ranges-class), 24
isNormal,Ranges-method

(Ranges-class), 24

lapply, 34
lapply,TypedList,function-method

(TypedList-class), 32
last (Ranges-class), 24
last,Ranges-method

(Ranges-class), 24
length,IntervalTree-method

(IntervalTree-class), 11
length,MaskCollection-method

(MaskCollection-class), 13
length,RangedData-method

(RangedData-class), 18
length,Ranges-method

(Ranges-class), 24
length,TypedList-method

(TypedList-class), 32
length,XRle-method

(Sequence-class), 30
length,XSequence-method

(Sequence-class), 30
lgeMatrix-class, 29
list, 10, 27

makeActiveBinding, 22, 42
Mask (MaskCollection-class), 13
MaskCollection, 46, 47, 50
MaskCollection

(MaskCollection-class), 13
MaskCollection-class, 47
MaskCollection-class, 13, 46, 48, 50
MaskCollection.show_frame

(MaskCollection-class), 13
maskedratio

(MaskCollection-class), 13

58 INDEX

maskedratio,MaskCollection-method
(MaskCollection-class), 13

maskedwidth
(MaskCollection-class), 13

maskedwidth,MaskCollection-method
(MaskCollection-class), 13

MaskedXString-class, 15
match, 11
matchMatrix

(RangesMatching-class), 29
matchMatrix,RangesMatching-method

(RangesMatching-class), 29
matchPattern, 13, 15
Matrix-class, 29
Matrix-class, 29
max,MaskCollection-method

(MaskCollection-class), 13
max,NormalIRanges-method

(IRanges-class), 5
min,MaskCollection-method

(MaskCollection-class), 13
min,NormalIRanges-method

(IRanges-class), 5

names,IRanges-method
(IRanges-class), 5

names,MaskCollection-method
(MaskCollection-class), 13

names,RangedData-method
(RangedData-class), 18

names,TypedList-method
(TypedList-class), 32

names<-,IRanges-method
(IRanges-class), 5

names<-,MaskCollection-method
(MaskCollection-class), 13

names<-,RangedData-method
(RangedData-class), 18

names<-,TypedList-method
(TypedList-class), 32

narrow, 24, 51
narrow (IRanges-utils), 7
narrow,IRanges-method

(IRanges-utils), 7
narrow,NormalIRanges-method

(IRanges-utils), 7
narrow,Views-method

(Views-class), 35
newViews (Views-class), 35
ngCMatrix-class, 29
nir_list (MaskCollection-class),

13

nir_list,MaskCollection-method
(MaskCollection-class), 13

NormalIRanges, 8–10, 13, 14, 25, 50
NormalIRanges (IRanges-class), 5
NormalIRanges-class, 15, 50
NormalIRanges-class

(IRanges-class), 5

overlap, 11, 24, 29, 30
overlap (IntervalTree-class), 11
overlap,IntervalTree,Ranges-method

(IntervalTree-class), 11
overlap,Ranges,missing-method

(IntervalTree-class), 11
overlap,Ranges,Ranges-method

(IntervalTree-class), 11

pintersect (IRanges-setops), 6
pintersect,IRanges,IRanges-method

(IRanges-setops), 6
psetdiff (IRanges-setops), 6
psetdiff,IRanges,IRanges-method

(IRanges-setops), 6
punion (IRanges-setops), 6
punion,IRanges,IRanges-method

(IRanges-setops), 6

RangedData, 4, 15, 17, 22, 23, 32, 40
RangedData (RangedData-class), 18
rangedData (rdapply), 15
rangedData,RDApplyParams-method

(rdapply), 15
RangedData-class, 18, 26
RangedData-utils, 20, 22
rangedData<- (rdapply), 15
rangedData<-,RDApplyParams-method

(rdapply), 15
RangedDataList, 20
RangedDataList

(RangedDataList-class), 23
RangedDataList-class, 23
Ranges, 5, 22, 26, 29, 44
Ranges (Ranges-class), 24
ranges (RangedData-class), 18
ranges,RangedData-method

(RangedData-class), 18
Ranges-class, 5, 7, 9, 24
RangesList, 10, 18, 19, 24, 28, 34
RangesList (RangesList-class), 26
RangesList-class, 26
RangesList-utils, 28
RangesMatching, 11, 12
RangesMatching-class, 29

INDEX 59

rbind (XDataFrame-class), 39
rbind,XDataFrame-method

(XDataFrame-class), 39
rbind.data.frame, 40
rdapply, 2, 15, 18, 20
rdapply,RDApplyParams-method

(rdapply), 15
RDApplyParams (rdapply), 15
RDApplyParams-class (rdapply), 15
read.agpMask (read.Mask), 47
read.gapMask (read.Mask), 47
read.liftMask (read.Mask), 47
read.Mask, 15, 47
read.rmMask (read.Mask), 47
read.trfMask (read.Mask), 47
reduce, 10, 24, 28
reduce (IRanges-utils), 7
reduce,IRanges-method

(IRanges-utils), 7
reduce,MaskCollection-method

(MaskCollection-class), 13
reduce,RangesList-method

(RangesList-utils), 28
reduce,XRanges-method

(XRanges-class), 44
reducerFun (rdapply), 15
reducerFun,RDApplyParams-method

(rdapply), 15
reducerFun<- (rdapply), 15
reducerFun<-,RDApplyParams-method

(rdapply), 15
reducerParams (rdapply), 15
reducerParams,RDApplyParams-method

(rdapply), 15
reducerParams<- (rdapply), 15
reducerParams<-,RDApplyParams-method

(rdapply), 15
rep, 26
rep,Ranges-method (Ranges-class),

24
rep,Sequence-method

(Sequence-class), 30
rep,XRle-method (Sequence-class),

30
restrict, 24
restrict (IRanges-utils), 7
restrict,IRanges-method

(IRanges-utils), 7
restrict,Views-method

(Views-class), 35
reverse, 15, 49
reverse,IRanges-method (reverse),

49
reverse,MaskCollection-method

(reverse), 49
reverse,NormalIRanges-method

(reverse), 49
reverse,XRle-method

(Sequence-class), 30

sapply, 16, 17
Sequence, 35, 36
Sequence (Sequence-class), 30
Sequence-class, 30
SequenceORvector

(Sequence-class), 30
SequenceORvector-class

(Sequence-class), 30
setdiff,IRanges,IRanges-method

(IRanges-setops), 6
shift, 24
shift (IRanges-utils), 7
shift,IRanges-method

(IRanges-utils), 7
show,MaskCollection-method

(MaskCollection-class), 13
show,RangedData-method

(RangedData-class), 18
show,Ranges-method

(Ranges-class), 24
show,RangesList-method

(RangesList-class), 26
show,TypedList-method

(TypedList-class), 32
show,XDataFrame-method

(XDataFrame-class), 39
show,XInteger-method

(Sequence-class), 30
show,XIntegerViews-method

(XIntegerViews-class), 43
show,XNumeric-method

(Sequence-class), 30
show,XRleInteger-method

(Sequence-class), 30
show,XRleIntegerViews-method

(XRleIntegerViews-class),
45

simplify (rdapply), 15
simplify,RDApplyParams-method

(rdapply), 15
simplify<- (rdapply), 15
simplify<-,RDApplyParams-method

(rdapply), 15
slice (Views-utils), 37

60 INDEX

slice,integer-method
(Views-utils), 37

slice,XInteger-method
(Views-utils), 37

slice,XRleInteger-method
(Views-utils), 37

solveUserSEW, 9, 31, 50
split, 19, 33
split,RangedData-method

(RangedData-class), 18
split,Ranges-method

(RangesList-class), 26
split,XDataFrame-method

(XDataFrame-class), 39
SplitXDataFrame, 18, 19, 40
SplitXDataFrame

(SplitXDataFrame-class), 31
SplitXDataFrame-class, 31
start,IRanges-method

(IRanges-class), 5
start,RangedData-method

(RangedData-class), 18
start,Ranges-method

(Ranges-class), 24
start,RangesList-method

(RangesList-class), 26
start,XRanges-method

(XRanges-class), 44
start<- (Ranges-class), 24
start<-,IRanges-method

(IRanges-class), 5
strand (GenomicData-class), 3
strand,GenomicData-method

(GenomicData-class), 3
strand,missing-method

(GenomicData-class), 3
subject (Views-class), 35
subject,Views-method

(Views-class), 35
subseq (Sequence-class), 30
subseq,MaskCollection-method

(MaskCollection-class), 13
subseq,SequenceORvector-method

(Sequence-class), 30
subseq,XSequence-method

(Sequence-class), 30
subviews (Views-class), 35
subviews,Views-method

(Views-class), 35
successiveIRanges

(IRanges-utils), 7
successiveViews, 9

successiveViews (Views-class), 35
summary,RangesList-method

(RangesList-class), 26

t,RangesMatching-method
(RangesMatching-class), 29

toNormalIRanges (IRanges-utils), 7
trim (Views-class), 35
trim,Views-method (Views-class),

35
TypedList, 2, 23, 26, 31
TypedList-class, 32

union,IRanges,IRanges-method
(IRanges-setops), 6

unlist,IRangesList-method
(IRangesList-class), 10

unlist,SplitXDataFrame-method
(SplitXDataFrame-class), 31

unlist,TypedList-method
(TypedList-class), 32

update, 26
update,IRanges-method

(IRanges-class), 5

values (RangedData-class), 18
values,RangedData-method

(RangedData-class), 18
viewMaxs (Views-utils), 37
viewMaxs,XIntegerViews-method

(Views-utils), 37
viewMaxs,XRleIntegerViews-method

(Views-utils), 37
viewMins (Views-utils), 37
viewMins,XIntegerViews-method

(Views-utils), 37
viewMins,XRleIntegerViews-method

(Views-utils), 37
Views, 37, 43, 45
Views (Views-class), 35
views (Views-class), 35
Views,integer-method

(XIntegerViews-class), 43
Views,XInteger-method

(XIntegerViews-class), 43
Views,XRleInteger-method

(XRleIntegerViews-class),
45

Views-class, 31, 35, 44, 45
Views-utils, 37, 44, 45
viewSums (Views-utils), 37
viewSums,XIntegerViews-method

(Views-utils), 37

INDEX 61

viewSums,XRleIntegerViews-method
(Views-utils), 37

whichAsIRanges (IRanges-utils), 7
whichFirstNotNormal

(Ranges-class), 24
whichFirstNotNormal,Ranges-method

(Ranges-class), 24
width (Ranges-class), 24
width,IRanges-method

(IRanges-class), 5
width,MaskCollection-method

(MaskCollection-class), 13
width,RangedData-method

(RangedData-class), 18
width,Ranges-method

(Ranges-class), 24
width,RangesList-method

(RangesList-class), 26
width,XRanges-method

(XRanges-class), 44
width<- (Ranges-class), 24
width<-,IRanges-method

(IRanges-class), 5
width<-,Views-method

(Views-class), 35

XDataFrame, 19, 31, 32, 42
XDataFrame (XDataFrame-class), 39
XDataFrame-class, 39
XDataFrame-utils, 42
XInteger, 38, 43, 46
XInteger (Sequence-class), 30
XInteger-class, 44
XInteger-class (Sequence-class),

30
XIntegerViews, 35, 38
XIntegerViews

(XIntegerViews-class), 43
XIntegerViews-class, 36, 38, 43
XNumeric (Sequence-class), 30
XNumeric-class (Sequence-class),

30
XRanges, 11, 12, 24
XRanges (XRanges-class), 44
XRanges-class, 26, 44
XRaw (Sequence-class), 30
XRaw-class (Sequence-class), 30
XRle (Sequence-class), 30
XRle-class (Sequence-class), 30
XRleInteger, 38, 45, 46
XRleInteger (Sequence-class), 30
XRleInteger-class, 45, 46

XRleInteger-class
(Sequence-class), 30

XRleIntegerViews, 38
XRleIntegerViews

(XRleIntegerViews-class),
45

XRleIntegerViews-class, 38, 45
XSequence, 36, 39
XSequence (Sequence-class), 30
XSequence-class (Sequence-class),

30
XString, 13, 30
XStringViews-class, 36

	FilterRules-class
	GenomicData-class
	IRanges-class
	IRanges-setops
	IRanges-utils
	IRangesList-class
	IntervalTree-class
	MaskCollection-class
	rdapply
	RangedData-class
	RangedData-utils
	RangedDataList-class
	Ranges-class
	RangesList-class
	RangesList-utils
	RangesMatching-class
	Sequence-class
	SplitXDataFrame-class
	TypedList-class
	Views-class
	Views-utils
	XDataFrame-class
	XDataFrame-utils
	XIntegerViews-class
	XRanges-class
	XRleIntegerViews-class
	coverage
	read.Mask
	reverse
	solveUserSEW
	Index

