\name{pnnCMA} \alias{pnnCMA} \title{Probabilistic Neural Networks} \description{Probabilistic Neural Networks is the term Specht (1990) used for a Gaussian kernel estimator for the conditional class densities. For \code{S4} method information, see \link{pnnCMA-methods}.} \usage{ pnnCMA(X, y, f, learnind, sigma = 1) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{X}{Gene expression data. Can be one of the following: \itemize{ \item A \code{matrix}. Rows correspond to observations, columns to variables. \item A \code{data.frame}, when \code{f} is \emph{not} missing (s. below). \item An object of class \code{ExpressionSet}. Each variable (gene) will be scaled for unit variance and zero mean. }} \item{y}{Class labels. Can be one of the following: \itemize{ \item A \code{numeric} vector. \item A \code{factor}. \item A \code{character} if \code{X} is an \code{ExpressionSet} that specifies the phenotype variable. \item \code{missing}, if \code{X} is a \code{data.frame} and a proper formula \code{f} is provided. } \bold{WARNING}: The class labels will be re-coded to range from \code{0} to \code{K-1}, where \code{K} is the total number of different classes in the learning set. } \item{f}{A two-sided formula, if \code{X} is a \code{data.frame}. The left part correspond to class labels, the right to variables.} \item{learnind}{An index vector specifying the observations that belong to the learning set. For this method, this must \emph{not} be \code{missing}.} \item{sigma}{Standard deviation of the Gaussian Kernel used. This hyperparameter should be tuned, s. \code{\link{tune}}. The default is \code{1}, but this generally does not lead to good results. Actually, this method reacts very sensitively to the value of sigma. Take care if warnings appear related to the particular choice.} } \value{An object of class \code{\link{cloutput}}.} \note{There is actually no strong relation of this method to Feed-Forward Neural Networks, s. \code{\link{nnetCMA}}.} \references{Specht, D.F. (1990). Probabilistic Neural Networks. \emph{Neural Networks, 3, 109-118}.} \author{Martin Slawski \email{martin.slawski@campus.lmu.de} Anne-Laure Boulesteix \url{http://www.slcmsr.net/boulesteix}} \seealso{\code{\link{compBoostCMA}}, \code{\link{dldaCMA}}, \code{\link{ElasticNetCMA}}, \code{\link{fdaCMA}}, \code{\link{flexdaCMA}}, \code{\link{gbmCMA}}, \code{\link{knnCMA}}, \code{\link{ldaCMA}}, \code{\link{LassoCMA}}, \code{\link{nnetCMA}}, \code{\link{pknnCMA}}, \code{\link{plrCMA}}, \code{\link{pls_ldaCMA}}, \code{\link{pls_lrCMA}}, \code{\link{pls_rfCMA}}, \code{\link{qdaCMA}}, \code{\link{rfCMA}}, \code{\link{scdaCMA}}, \code{\link{shrinkldaCMA}}, \code{\link{svmCMA}}} \examples{ ### load Golub AML/ALL data data(golub) ### extract class labels golubY <- golub[,1] ### extract gene expression from first 10 genes golubX <- as.matrix(golub[,2:11]) ### select learningset ratio <- 2/3 set.seed(111) learnind <- sample(length(golubY), size=floor(ratio*length(golubY))) ### run PNN pnnresult <- pnnCMA(X=golubX, y=golubY, learnind=learnind, sigma = 3) ### show results show(pnnresult) ftable(pnnresult) plot(pnnresult) } \keyword{multivariate}