AnnotationDbi

April 19, 2009

AnnDbBimap-envirAPI

Environment-like API for AnnDbBimap objects

Description

These methods allow the user to manipulate any AnnDbBimap object as if it was an environment.
This environment-like API is provided for backward compatibility with the traditional environment-
based maps.

Usage

ls (name, pos, envir, all.names, pattern)
exists(x, where, envir, frame, mode, inherits)
get (x, pos, envir, mode, inherits)

#x[[1]]

#xSname

## Converting to a list

mget (x, envir, mode, ifnotfound, inherits)
eapply(env, FUN, ..., all.names)

#contents (object, all.names)

## Additional convenience method
sample (x, size, replace=FALSE, prob=NULL)

Arguments
name An AnnDbBimap object for 1s. A key as a literal character string or a name
(possibly backtick quoted) for x$Sname.
pos Ignored.
envir Ignored for 1s. An AnnDbBimap object for mget, get and exists.
all.names Ignored.
pattern An optional regular expression. Only keys matching ’pattern’ are returned.
X The key(s) to search for for exists, get and mget. An AnnDbBimap object

for [ [ and x$name. An AnnDbBimap object or an environment for sample.



2 AnnDbObj-objects

where Ignored.
frame Ignored.
mode Ignored.
inherits Ignored.
i Single key specifying the map element to extract.

ifnotfound A value to be used if the key is not found. Only NA is currently supported.

env An AnnDbBimap object.

FUN The function to be applied (see original eapply for environments for the de-
tails).
Optional arguments to FUN.

size Non-negative integer giving the number of map elements to choose.

replace Should sampling be with replacement?

prob A vector of probability weights for obtaining the elements of the map being
sampled.

See Also

1s,exists, get, mget, eapply, contents, sample, BimapFormatting, Bimap

Examples

library (hgu95av2.db)
x <- hgu95av2CHRLOC

Is(x) [1:3]
exists(ls(x)[1l], x)
exists ("titi", x)
get (1s(x) [1], x)
x[[1s(x)[1]]]
x$titi # NULL

mget (1s(x) [1:3], x)
eapply (x, length)

contents (x)

sample (x, 3)

AnnDbObj-objects AnnDbObj objects

Description
The AnnDbODbj class is the most general container for storing any kind of SQLite-based annotation
data.

Details

Many classes in AnnotationDbi inherit directly or indirectly from the AnnDbObj class. One impor-
tant particular case is the AnnDbBimap class which is the lowest class in the AnnDbODbj hierarchy
to also inherit the Bimap interface.



AnnDbObj-objects 3

Accessor-like methods

In the code snippets below, x is an AnnDbODbj object.
dbconn (x) : Return a connection object to the SQLite DB containing x’s data.
dbfile (x): Return the path (character string) to the SQLite DB (file) containing x’s data.

dbmeta (x, name): Print the value of metadata whose name is ‘name’. Also works if x is a
DBIConnection object.

dbschema (x, file="", show.indices=FALSE) :Printthe schema definition of the SQLite
DB. Also works if x is a DBIConnection object.

The f£ile argument must be a connection, or a character string naming the file to print to (see
the £ile argument of the cat function for the details).

The CREATE INDEX statements are not shown by default. Use show. indices=TRUE to
get them.

dbInfo (x): Prints other information about the SQLite DB. Also works if x is a DBIConnection
object.

See Also

dbConnect, dbListTables, dbListFields, dbGetQuery, Bimap

Examples

library ("hgu95av2.db")

dbconn (hgu95av2ENTREZID) # same as hgu95av2_dbconn ()
dbfile (hgu95av2ENTREZID) # same as hgu95av2_dbfile()
dbmeta (hgu95av2_dbconn (), "ORGANISM")

dbmeta (hgu95av2_dbconn (), "DBSCHEMA")

dbmeta (hgu95av2_dbconn (), "DBSCHEMAVERSION")

library ("DBI")
dbListTables (hgu95av2_dbconn () ) #1lists all tables on connection

## If you use dbSendQuery instead of dbGetQuery

## (NOTE: for ease of use, this is defintitely NOT reccomended)

## Then you may need to know how to list results objects
dbListResults (hgu95av2_dbconn()) #for listing results objects

## Sometimes you may want to see all the SQLite databases that are

## presently connected in your session. To do that you have to specify
## the driver:

library ("RSQLite")

drvr <- dbDriver ("SQLite") #gets the driver for SQLite
dbListConnections (drvr) #List all DB Connections using drvr
dbListFields (hgu95av2_dbconn (), "probes")

dbListFields (hgu95av2_dbconn (), "genes")

dbschema (hgu95av2ENTREZID) # same as hgu95av2_dbschema ()

## According to the schema, the probes._id column references the genes._id
## column. Note that in all tables, the "_id" column is an internal id with

## no biological meaning (provided for allowing efficient joins between



4 AnnDbPkg-checker

## tables).
## To retrieve the mapping between manufacturer IDs and Entrez Gene IDs:
dbGetQuery (hgu95av2_dbconn (), "SELECT x FROM probes INNER JOIN genes USING(_id) LIMIT 1

## This mapping is in fact the ENTREZID map:
toTable (hgu95av2ENTREZID) [1:10, ] # only relevant columns are retrieved

dbInfo (hgu95av2G0O) # same as hgu95av2_dbInfo ()

##Advanced example:
##Sometimes you may wish to Jjoin data from across multiple databases at
##once:
## In the following example we will attach the GO database to the
## hgu95av2 database, and then grab information from separate tables
## in each database that meet a common criteria.
library (hgu95av2.db)
library ("GO.db")
attachSqgl <- paste('ATTACH "', GO_dbfile(), '"" as go;', sep = "")
dbGetQuery (hgu95av2_dbconn (), attachSqgl)
sgql <- 'SELECT DISTINCT a.go_id AS "hgu95av2.go_id",
a._id AS "hgu95av2._id",
g.go_id AS "GO.go_id", g._id AS "GO._id",
g.term, g.ontology, g.definition
FROM go_bp_all AS a, go.go_term AS g
WHERE a.go_id = g.go_id LIMIT 10;'

data <- dbGetQuery (hgu95av2_dbconn(), sqgl)
data
## For illustration purposes, the internal id "_id" and the "go_id"

## from both tables is included in the output. This makes it clear

## that the "go_ids" can be used to join these tables but the internal
## ids can NOT. The internal IDs (which are always shown as _id) are
## suitable for joins within a single database, but cannot be used

## across databases.

AnnDbPkg-checker Check the SQL data contained in an SQLite-based annotation package

Description

Check the SQL data contained in an SQLite-based annotation package.

Usage

checkMAPCOUNTS (pkgname)

Arguments

pkgname The name of the SQLite-based annotation package to check.

Author(s)

H. Pages

See Also
AnnDbPkg-maker



AnnDbPkg-maker 5

Examples

checkMAPCOUNTS ("hgu95av2.db")
checkMAPCOUNTS ("GO.db")

AnnDbPkg-maker Creates an SQLite-based annotation package

Description

Creates an SQLite-based annotation package from an SQLite file.

Usage
makeAnnDbPkg (x, dbfile, dest_dir=".", no.man=FALSE, ...)
loadAnnDbPkgIndex (file)
Arguments
X A AnnDbPkgSeed object, a list, a string or a regular expression.
dbfile The path to the SQLite containing the annotation data for the package to build.
dest_dir The directory where the package will be created.
file The path to a DCF file containing the list of annotation packages to build.
no.man If TRUE then no man page is included in the package.
Extra args used for extra filtering.
See Also

AnnDbPkg-checker

Examples

## With a "AnnDbPkgSeed" object:

seed <- new ("AnnDbPkgSeed",
Package="hgul33a2.db",
Version="0.0.99",
PkgTemplate="HUMANCHIP.DB",
AnnObjPrefix="hgul33a2"

if (FALSE)
makeAnnDbPkg (seed, "path/to/hgul33a2.sqglite")

## With package names:
## (Note that in this case makeAnnDbPkg() will use the package descriptions
## found in the master index file ANNDBPKG-INDEX.TXT located in the
## AnnotationDbi package.)
if (FALSE)
makeAnnDbPkg (c ("hgu95av2.db", "hgul33a2.db"))

## A character vector of length 1 is treated as a regular expression:
if (FALSE)
makeAnnDbPkg ("hgu.*")



6 Bimap-direction

## To make all the packages described in the master index:
if (FALSE)
makeAnnDbPkg ("")
## Extra args can be used to narrow down the roaster of packages to make:
if (FALSE) {
makeAnnDbPkg ("", PkgTemplate="HUMANCHIP.DB", manufacturer="Affymetrix")
makeAnnDbPkg (".+[3k]\\.db", species=c ("Mouse", "Rat"))
}

## The master index file ANNDBPKG-INDEX.TXT can be loaded with:
loadAnnDbPkgIndex ()

Bimap—-direction Methods for getting/setting the direction of a Bimap object, and undi-
rected methods for getting/counting/setting its keys

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

They are divided in 2 groups: (1) methods for getting or setting the direction of a Bimap object and
(2) methods for getting, counting or setting the left or right keys (or mapped keys only) of a Bimap
object. Note that all the methods in group (2) are undirected methods i.e. what they return does
NOT depend on the direction of the map (more on this below).

Usage

## Getting or setting the direction of a Bimap object
direction (x)

direction (x) <- value

revmap (x, ...)

## Getting, counting or setting the left or right keys (or mapped
## keys only) of a Bimap object
Lkeys (%)

Rkeys (x)

Llength (x)

Rlength (x)

mappedLkeys (x)

mappedRkeys (x)

count .mappedLkeys (x)

count .mappedRkeys (x)

Lkeys (x) <- value

Rkeys (x) <- wvalue

subset (x, ...)

Arguments
X A Bimap object.
value A single integer or character string indicating the new directionin direction (x)

<— wvalue. A character vector containing the new keys (must be a subset of
the current keys) in Lkeys (x) <- value and Rkeys (x) <- value.



Bimap-direction 7

Extra argument for revmap can be:

objName The name to give to the reversed map (only supported if x is an
AnnDbBimap object).

Extra arguments for subset can be:

Lkeys The new Lkeys.

Rkeys The new Rkeys.

drop.invalid.keys Ifdrop.invalid.keys=FALSE (the default), an
error will be raised if the new Lkeys or Rkeys contain invalid keys i.e. keys

that don’t belong to the current Lkeys or Rkeys. If drop.invalid.keys=TRUE,
invalid keys are silently dropped.

objName The name to give to the submap (only supported if x is an AnnDb-
Bimap object).

Details

All Bimap objects have a direction which can be left-to-right (i.e. the mapping goes from the left
keys to the right keys) or right-to-left (i.e. the mapping goes from the right keys to the left keys).
A Bimap object x that maps from left to right is considered to be a direct map. Otherwise it is
considered to be an indirect map (when it maps from right to left).

direction returns 1 on a direct map and —1 otherwise.

The direction of x can be changed with direction (x) <- wvalue where value must be 1 or
—-1. An easy way to reverse a map (i.e. to change its direction) is to do direction (x) <- -
direction (x), or, even better, to use revmap (x) which is actually the recommended way for
doing it.

The Lkeys and Rkeys methods return respectively the left and right keys of a Bimap object. Un-
like the keys method (see ?keys for more information), these methods are direction-independent
i.e. what they return does NOT depend on the direction of the map. Such methods are also said to
be "undirected methods" and methods like the keys method are said to be "directed methods".

All the methods described below are also "undirected methods".

Llength (x) and Rlength (x) are equivalent to (but more efficient than) length (Lkeys (x) )
and length (Rkeys (x) ), respectively.

The mappedLkeys (or mappedRkeys) method returns the left keys (or right keys) that are
mapped to at least one right key (or one left key).

count .mappedLkeys (x) and count .mappedRkeys (x) are equivalent to (but more effi-
cient than) length (mappedLkeys (x) ) and length (mappedRkeys (x) ), respectively.

Lkeys (x) <- value and Rkeys (x) <- value are the undirected versions of keys (x)
<- value (see ?keys for more information) and subset (x, Lkeys=new_Lkeys, Rkeys=new_Rkeys)
is provided as a convenient way to reduce the sets of left and right keys in one single function call.

Value

1Lor-1Lfordirection.

A Bimap object of the same subtype as x for revmap and subset.

A character vector for Lkeys, Rkeys, mappedLkeys and mappedRkeys.

A single non-negative integer for Llength, Rlength, count .mappedLkeys and count .mappedRkeys.

Author(s)

H. Pages



8 Bimap-keys

See Also

Bimap, Bimap-keys, BimapFormatting, AnnDbBimap-envirAPI

Examples

library (hgu95av2.db)
1s(2)

x <= hgu95av2GO

X

summary (x)
direction (x)

length (x)
Llength (x)
Rlength (x)

keys (x) [1:4]
Lkeys (x) [1:4]
Rkeys (x) [1:4]

count .mappedkeys (x)
count .mappedLkeys (x)
count .mappedRkeys (x)
mappedkeys (x) [1:4]
mappedLkeys (x) [1:4]
mappedRkeys (x) [1:4]

y <—- revmap (x)
Yy

summary (y)
direction (y)

length (y)
Llength (y)
Rlength (y)

4]
: 4]
:4]

Lkeys

keys (y
(
Rkeys (

) [1:
y) [1
y) [1
## etc...

## Get rid of all unmapped keys (left and right)
z <— subset (y, Lkeys=mappedLkeys(y), Rkeys=mappedRkeys(y))

Bimap-keys Methods for manipulating the keys of a Bimap object

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).



Bimap-keys 9

Usage

keys (x)

#length (x)

1sNA (x)
mappedkeys (x)

count .mappedkeys (x)
keys (x) <- value

#x[1]
Arguments
X A Bimap object.
value A character vector containing the new keys (must be a subset of the current
keys).
i A character vector containing the keys of the map elements to extract.
Details

keys (x) returns the set of all valid keys for map x. For example, keys (hgu95av2G0) is the
set of all probe set IDs for chip hgu95av2 from Affymetrix. Note that the double bracket operator
[ [ for Bimap objects is guaranteed to work only with a valid key and will raise an error if the key
is invalid. (See ¢ AnnDbBimap—-envirAPI * for more information about this operator.)

length (x) is equivalent to (but more efficient than) length (keys (x) ).
A valid key is not necessarily mapped ([ [ will return an NA on an unmapped key).

isNA (x) returns a logical vector of the same length as x where the TRUE value is used to mark
keys that are NOT mapped and the FALSE value to mark keys that ARE mapped.

mappedkeys (x) returns the subset of keys (x) where only mapped keys were kept.
count .mappedkeys (x) isequivalent to (but more efficient than) length (mappedkeys (x) ).

Two (almost) equivalent forms of subsetting a Bimap object are provided: (1) by setting the keys
explicitely and (2) by using the single bracket operator [ for Bimap objects. Let’s say the user
wants to restrict the mapping to the subset of valid keys stored in character vector mykeys. This
can be done either with keys (x) <- mykeys (form (1)) or with y <- x[mykeys] (form
(2)). Please note that form (1) alters object x in an irreversible way (the original keys are lost) so
form (2) should be preferred.

All the methods described on this pages are "directed methods" i.e. what they return DOES de-
pend on the direction of the Bimap object that they are applied to (see ?direction for more
information about this).

Value

A character vector for keys and mappedkeys.
A single non-negative integer for length and count .mappedkeys.
A logical vector for 1 sNA.

A Bimap object of the same subtype as x for x [1].

Author(s)

H. Pages



10

Bimap-toTable

See Also

Bimap, AnnDbBimap-envirAPI, Bimap-toTable, BimapFormatting

Examples

library (hgu95av2.db)
x <- hgu95av2GO
X

length (x)
count .mappedkeys (x)
x[1:3]

links (x[1:31)

## Keep only the mapped keys
keys (x) <- mappedkeys (x)
length (x)

count .mappedkeys (x)

X # now it is a submap

## The above subsetting can also be achieved with
x <-= hgu95av2G0O [mappedkeys (hgu95av2GO) ]

## mappedkeys () and count.mappedkeys () also work with an environment
## or a list

z <— list (k1=NA, k2=letters[l:4], k3="x")

mappedkeys (z)

count .mappedkeys (z)

Bimap-toTable Methods for manipulating a Bimap object in a data-frame style

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

Usage

## Extract all the columns of the map (links + right attributes)
toTable (x)

Nnrow (x)

ncol
#dim
head
tail

(%)

(%)

(x, ...)

(2, «..)

## Extract only the links of the map
links (x)

count.links (x)

nhit (x)

## Col names and col metanames



Bimap-toTable 11

colnames (x, do.NULL=TRUE, prefix="col")
colmetanames (x)

Lkeyname (x)

Rkeyname (x)

keyname (x)

tagname (x)

Rattribnames (x)

Rattribnames (x) <- value

Arguments
X A Bimap object (or a list or an environment for nhit).
Further arguments to be passed to or from other methods (see head or tail
for the details).
do.NULL Ignored.
prefix Ignored.
value A character vector containing the names of the new right attributes (must be a
subset of the current right attribute names) or NULL.
Details

toTable (x) turns Bimap object x into a data frame (see section "Flat representation of a bimap"
in ?Bimap for a short introduction to this concept). For simple maps (i.e. no tags and no right
attributes), the resulting data frame has only 2 columns, one for the left keys and one for the right
keys, and each row in the data frame represents a link (or edge) between a left and a right key. For
maps with tagged links (i.e. a tag is associated to each link), toTable (x) has one additional
colmun for the tags and there is still one row per link. For maps with right attributes (i.e. a set of
attributes is associated to each right key), toTable (x) has one additional colmun per attribute.
So for example if x has tagged links and 2 right attributes, toTable (x) will have 5 columns: one
for the left keys, one for the right keys, one for the tags, and one for each right attribute (always the
rightmost columns). Note that if at least one of the right attributes is multivalued then more than
1 row can be needed to represent the same link so the number of rows in toTable (x) can be
strictly greater than the number of links in the map.

nrow (x) is equivalent to (but more efficient than) nrow (toTable (x) ).
ncol (x) is equivalent to (but more efficient than) ncol (toTable (x)).

colnames (x) is equivalent to (but more efficient than) colnames (toTable (x) ). Columns
are named accordingly to the names of the SQL columns where the data are coming from. An
important consequence of this that they are not necessarily unique.

colmetanames (x) returns the metanames for the column of x that are not right attributes. Valid
column metanames are "Lkeyname", "Rkeyname" and "tagname".

Lkeyname, Rkeyname, tagname and Rattribnames return the name of the column (or
columns) containing the left keys, the right keys, the tags and the right attributes, respectively.

Like toTable (x), links (x) turns x into a data frame but the right attributes (if any) are
dropped. Note that dropping the right attributes produces a data frame that has eventually less
columns than toTable (x) and also eventually less rows because now exactly 1 row is needed to
represent 1 link.

count.links (x) isequivalent to (but more efficient than) nrow (1inks (x)).

nhit (x) returns a named integer vector indicating the number of "hits" for each key in x i.e. the
number of links that start from each key.



12 Bimap-toTable

Value

A data frame for toTable and 1inks.

A single integer for nrow, ncol and count . links.

A character vector for colnames, colmetanames and Rattribnames.
A character string for Lkeyname, Rkeyname and tagname.

A named integer vector for nhit.

Author(s)
H. Pages

See Also

Bimap, BimapFormatting, AnnDbBimap-envirAPI

Examples

library (GO.db)

x <— GOSYNONYM

X

toTable(x) [1:4, ]
toTable (x["GO:0007322"])
links (x) [1:4, 1

links (x["GO:0007322"])

nrow (x)

ncol (x)

dim(x)
colnames (x)
colmetanames (x)
Lkeyname (x)
Rkeyname (x)
tagname (x)
Rattribnames (x)

links(x) [1:4, ]
count.links (x)

y <— GOBPCHILDREN
nhy <- nhit(y) # 'nhy' is a named integer vector
identical (names (nhy), keys(y)) # TRUE

table (nhy)
sum(nhy == 0) # number of GO IDs with no children
names (nhy) [nhy == max (nhy)] # the GO ID(s) with the most direct children

## Some sanity check
sum (nhy) == count.links(y) # TRUE

## Changing the right attributes of the GOSYNONYM map (advanced
## users only)

class (x) # GOTermsAnnDbBimap

as.list(x)[1:3]

colnames (x)

colmetanames (x)



Bimap 13

tagname (x) # untagged map
Rattribnames (x)

Rattribnames (x) <- Rattribnames (x) [3:1]
colnames (x)

class (x) # AnnDbBimap

as.list(x) [1:3]

Bimap Bimap objects and the Bimap interface

Description

What we usually call "annotation maps" are in fact Bimap objects. In the following sections we
present the bimap concept and the Bimap interface as it is defined in AnnotationDbi.

Display methods
In the code snippets below, x is a Bimap object.

show (x) : Display minimal information about Bimap object x.
summary (x) : Display a little bit more information about Bimap object x.

The bimap concept
A bimap is made of:

- 2 sets of objects: the left objects and the right objects.
All the objects have a name and this name is unique in
each set (i.e. in the left set and in the right set).

The names of the left (resp. right) objects are called the
left (resp. right) keys or the Lkeys (resp. the Rkeys).

— Any number of links (edges) between the left and right
objects. Note that the links can be tagged. In our model,
for a given bimap, either none or all the links are tagged.

In other words, a bimap is a bipartite graph.

Here are some examples:

1. bimap Bl:

4 left objects (Lkeys): "a", "b", "c", "d"
3 objects on the right (Rkeys): "A", "B", "C"

Links (edges):
"a" <__> "A"
"all <——> ngn
"b" <——> mnpn
"d" <77> "c"

Note that:
— There can be any number of links starting from or ending
at a given object.
— The links in this example are untagged.



14 Bimap

2. bimap B2:

4 left objects (Lkeys): "a", "b", "c", "d"
3 objects on the right (Rkeys): "A", "B", "C"

Tagged links (edges):
na" <—MxM_5 wpm
na" <_"yn_> ngn
"b" <7"X"7> "A"
"d" <_"X"_> "C"
"d" <_"y"_> "C"

Note that there are 2 links between objects "d" and "C":
1 with tag "x" and 1 with tag "y".

Flat representation of a bimap

The flat representation of a bimap is a data frame. For example, for B1, it is:

left right

a A
a B
b A
d cC

If in addition the right objects have 1 multivalued attribute, for example, a numeric vector:

A <-— c(l1.2, 0.9)
B <—- character (0)
C <— -1:1

then the flat representation of B1 becomes:

left right Rattribl

a A 1.2
a A 0.9
a B NA
b A 1.2
b A 0.9
d C -1
d C 0
d C 1

Note that now the number of rows is greater than the number of links!

AnnDbBimap and FlatBimap objects

An AnnDbBimap object is a bimap whose data are stored in a data base. A FlatBimap object is
a bimap whose data (left keys, right keys and links) are stored in memory (in a data frame for
the links). Conceptually, AnnDbBimap and FlatBimap objects are the same (only their internal
representation differ) so it’s natural to try to define a set of methods that make sense for both (so
they can be manipulated in a similar way). This common interface is the Bimap interface.

Note that both AnnDbBimap and FlatBimap objects have a read-only semantic: the user can subset
them but cannot change their data.



Bimap 15

The "'flatten" generic

flatten(x) converts AnnDbBimap object x into FlatBimap
object y with no loss of information

Note that a FlatBimap object can’t be converted into an AnnDbBimap object (well, in theory maybe
it could be, but for now the data bases we use to store the data of the AnnDbBimap objects are
treated as read-only). This conversion from AnnDbBimap to FlatBimap is performed by the "flat-
ten" generic function (with methods for AnnDbBimap objects only).

Property(

The "flatten" generic plays a very useful role when we need to understand or explain exactly what
a given Bimap method f will do when applied to an AnnDbBimap object. It’s generally easier to
explain what it does on a FlatBimap object and then to just say "and it does the same thing on an
AnnDbBimap object”. This is exactly what Property0 says:

for any AnnDbBimap object x, f(x) is expected to be
indentical to f(flatten (x))

Of course, this implies that the f method for AnnDbBimap objects return the same type of object
than the f method for FlatBimap objects. In this sense, the "revmap" and "subset” Bimap methods
are particular because they are expected to return an object of the same class as their argument X, so
f(x) can’t be identical to f(flatten(x)). For these methods, Property0 says:

for any AnnDbBimap object x, flatten(f(x)) is expected to
be identical to f(flatten (x))

Note to the AnnotationDbi maintainers/developpers: the checkProperty0 function (AnnDbPkg-
checker.R file) checks that PropertyO is satisfied on all the AnnDbBimap objects defined in a given
package (FIXME: checkPropertyO is currently broken).

The Bimap interface in AnnotationDbi

The full documentation for the methods of the Bimap interface is splitted into 4 man pages: Bimap-
direction, Bimap-keys and Bimap-toTable.

See Also

Bimap-direction, Bimap-keys, Bimap-toTable, BimapFormatting, AnnDbBimap-envirAPI

Examples

library (hgu95av2.db)

1s(2)

hgu95av2GO # calls the "show" method
summary (hgu95av2GO0)

hgu95av2GO2PROBE # calls the "show" method
summary (hgu95av2GO2PROBE)



16

GOTerms-class

BimapFormatting Formatting a Bimap as a list or character vector

Description

These functions format a Bimap as a list or character vector.

Usage

## Formatting as a list
as.list(x, ...)

## Formatting as a character vector
#as.character(x, ...)

Arguments
X A Bimap object.
Further arguments are ignored.
Author(s)
H. Pages
See Also

Bimap, AnnDbBimap-envirAPI

Examples

library (hgu95av2.db)

as.list (hgu95av2CHRLOC) [1:9]
as.list (hgu95av2ENTREZID) [1:9]
as.character (hgu95av2ENTREZID) [1:9]

GOTerms—-class Class "GOTerms"

Description

A class to represent Gene Ontology nodes

Objects from the Class

Objects can be created by calls of the form GOTerms (GOId, term, ontology,

synonym, secondary). GOId, term, and ontology are required.

definition,



GOTerms-class 17

Slots

GOID: Object of class "character" A character string for the GO id of a primary node.

Term: Object of class "character" A character string that defines the role of gene product

corresponding to the primary GO id.

Ontology: Object of class "character" Gene Ontology category. Can be MF - molecular

function, CC - cellular component, or BP - biological process.

Definition: Object of class "character" Further definition of the ontology of the primary

GO id.

Synonym: Object of class "character" other ontology terms that are considered to be syn-

onymous to the primary term attached to the GO id (e.g. "type I programmed cell death" is
a synonym of "apoptosis”). Synonymous here can mean that the synonym is an exact syn-
onym of the primary term, is related to the primary term, is broader than the primary term, is
more precise than the primary term, or name is related to the term, but is not exact, broader or
narrower.

Secondary: Object of class "character" GO ids that are secondary to the primary GO id

as results of merging GO terms so that One GO id becomes the primary GO id and the rest
become the secondary.

Methods
GOID signature (object = "GOTerms"): The get method for slot GOID.
Term signature (object = "GOTerms"): The get method for slot Term.
Ontology signature (object = "GOTerms"): The get method for slot Ontology.
Definition signature (object = "GOTerms"): The get method for slot Definition.
Synonym signature (object = "GOTerms"): The get method for slot Synonym.
Secondary signature (object = "GOTerms"): The get method for slot Secondary.
show signature (x = "GOTerms"): The method for pretty print.

Note
GOTerms objects are used to represent primary GO nodes in the SQLite-based annotation data
package GO.db

References

http://www.geneontology.org/

Examples

gonode <- new ("GOTerms", GOID="GO:1234567", Term="Test", Ontology="MF",

Definition="just for testing")

GOID (gonode)
Term (gonode)
Ontology (gonode)


http://www.geneontology.org/

18 makeARABIDOPSISCHIP_DB

make_eg_to_go_map Create GO to Entrez Gene maps for chip-based packages

Description

Create a new map object mapping Entrez ID to GO (or vice versa) given a chip annotation data
package.

This is a temporary solution until a more general pluggable map solution comes online.

Usage

make_eg_to_go_map (chip)

Arguments

chip The name of the annotation data package.

Value

Either a Go3AnnDbMap or a RevGo3AnnDbMap.

Author(s)

Seth Falcon and Herve Pages
Examples
library ("hgu95av2.db")

eg2go = make_eg_to_go_map ("hgu95av2.db")
sample (eg2go, 2)

go2eg = make_go_to_eg_map ("hgu95av2.db")
sample (go2eg, 2)

makeARABIDOPSISCHIP_DB
Creates a sqlite database, and then makes an annotation package with
it

Description

This function 1st creates a SQLite file useful for making a SQLite based annotation package by
using the correct popXXXCHIP_DB function. Next, this function produces an annotation package
featuring the sqlite database produced.

Usage

makeARABIDOPSISCHIP_DB(affy, prefix, fileName, chipMapSrc, chipSrc,
outputDir, version, manufacturer, chipName, manufacturerUrl, author,
maintainer)



makeHUMANCHIP_DB 19

Arguments

affy Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix prefix is the first part of the eventual desired package name. (ie. "prefix.db")

fileName The path and filename for the file to be parsed. This field can be ommitted if
affy is set to TRUE. For all other arabidopsis chips, the IDs that match to the
probes MUST be TAIR IDs.

chipMapSrc  The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other.

chipSrc The path and filename to the intermediate database containing the annotation
data for the sqlite to build.

outputDir Where you would like the output files to be placed.
version What is the version number for the desired package.
manufacturer Who made the chip being described.

chipName What is the name of the chip.

manufacturerUrl
URL for manufacturers website.

author List of authors involved in making the package.

maintainer  List of package maintainers with email addresses for contact purposes.

Examples

## Not run:

## End(Not run)

makeHUMANCHIP_DB Creates a sqlite database, and then makes an annotation package with
it

Description

This function 1st creates a SQLite file useful for making a SQLite based annotation package by
using the correct popXXXCHIP_DB function. Next, this function produces an annotation package
featuring the sqlite database produced.

Usage

makeHUMANCHIP_DB(affy, prefix, fileName, otherSrc, chipMapSrc, chipSrc,
baseMapType, outputDir, version, manufacturer, chipName,
manufacturerUrl, author, maintainer)



20 makeHUMANCHIP_DB

Arguments

affy Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix prefix is the first part of the eventual desired package name. (ie. "prefix.db")

fileName The path and filename for the file to be parsed. This can either be an affy csv
file or it can be a more classic file type.

otherSrc The path and filenames to any other lists of IDs which might add information

about how a probe will map.

chipMapSrc  The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other.

chipSrc The path and filename to the intermediate database containing the annotation
data for the sqlite to build.

baseMapType The type of ID that is used for the initial base mapping. If using a classic base
mapping file, this should be the ID type present in the fileName. This can be
any of the following values: "gb" = for genbank IDs "ug" = unigene IDs "eg"
= Entrez Gene IDs "refseq" = refseq IDs "gbNRef" = mixture of genbank and

refseq IDs
outputDir Where you would like the output files to be placed.
version What is the version number for the desired package.

manufacturer Who made the chip being described.

chipName What is the name of the chip.

manufacturerUrl
URL for manufacturers website.

author List of authors involved in making the package.

maintainer  List of package maintainers with email addresses for contact purposes.

Examples
## Not run:
makeHUMANCHIP_DB(affy = TRUE,
prefix = "hgu95av2",
fileName = "/mnt/cpb_anno/mcarlson/proj/sgliteGen/srcFiles/hgu95av2/HG_L
otherSrc = c(

EA="/mnt/cpb_anno/mcarlson/proj/sqliteGen/srcFiles/hgu95av2/hgu95av2.F
UMICH="/mnt/cpb_anno/mcarlson/proj/sqgliteGen/srcFiles/hgu95av2/hgu95ax
chipMapSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/chipn
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sgliteGen/nli/annosrc/db/chipsrc_
baseMapType = "gbNRef",
version = "1.0.0",
manufacturer = "Affymetrix",
chipName = "hgu95av2",
manufacturerUrl = "http://www.affymetrix.com")
## End (Not run)



makeYEASTCHIP_DB 21

makeYEASTCHIP_DB Creates a sqlite database, and then makes an annotation package with
it

Description

This function 1st creates a SQLite file useful for making a SQLite based annotation package by
using the correct popXXXCHIP_DB function. Next, this function produces an annotation package
featuring the sqlite database produced.

Usage

makeYEASTCHIP_DB (affy, prefix, fileName, chipSrc, outputDir, version,
manufacturer, chipName, manufacturerUrl, author, maintainer)

Arguments

affy Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix prefix is the first part of the eventual desired package name. (ie. "prefix.db")

fileName The path and filename for the file to be parsed. This can either be an affy csv
file or it can be a more classic file type.

chipSrc The path and filename to the intermediate database containing the annotation

data for the sqlite to build.
outputDir Where you would like the output files to be placed.
version What is the version number for the desired package.
manufacturer Who made the chip being described.

chipName What is the name of the chip.

manufacturerUrl
URL for manufacturers website.

author List of authors involved in making the package.

maintainer  List of package maintainers with email addresses for contact purposes.

Examples

## Not run:

## End(Not run)



22 popARABIDOPSISCHIPDB

POpARABIDOPSISCHIPDB
Populates an SQLite DB with and produces a schema definition

Description

Creates SQLite file useful for making a SQLite based annotation package. Also produces the
schema file which details the schema for the database produced.

Usage

POPARABIDOPSISCHIPDB (affy, prefix, fileName, chipMapSrc, chipSrc, metaDataSrc,
outputDir, printSchema)

Arguments

affy Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix prefix is the first part of the eventual desired package name. (ie. "prefix.sqlite")

fileName The path and filename for the file to be parsed. This field can be ommitted if
affy is set to TRUE. For all other arabidopsis chips, the IDs that match to the
probes MUST be TAIR IDs.

chipMapSrc The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other.

chipSrc The path and filename to the intermediate database containing the annotation
data for the sqlite to build.

metaDataSrc Either a named character vector containing pertinent information about the meta-
data OR the path and filename to the intermediate database containing the meta-
data information for the package.

If this is a custom package, then it must be a named vector with the following
fields:

metaDataSrc <- ¢( DBSCHEMA="the DB schema", ORGANISM="the organ-
ism", SPECIES="the species", MANUFACTURER="the manufacturer", CHIP-
NAME-="the chipName", MANUFACTURERURL="the manufacturerUrl")

outputDir Where you would like the output files to be placed.
printSchema Boolean to indicate whether or not to produce an output of the schema (default
is FALSE).
Examples
## Not run:

##Set up the metadata

my_metaDataSrc <- c( DBSCHEMA="the DB schema",
ORGANISM="the organism",
SPECIES="the species",
MANUFACTURER="the manufacturer",
CHIPNAME="the chipName",
MANUFACTURERURL="the manufacturerUrl")



popHUMANCHIPDB

23

##Builds the ag sqglite:
POPARABIDOPSISCHIPDB (affy = TRUE,

##0r if the

prefix = "ag",

fileName = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/srcFiles/ag/AG_
chipMapSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/dk
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sgliteGen/nli/annosrc/db/ct

metaDataSrc = my_metaDataSrc,
printSchema=TRUE)

package is a standard package (it probably isn't):

POPARABIDOPSISCHIPDB (affy = TRUE,

prefix = "ag",

fileName = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/srcFiles/ag/AG_

chipMapSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/dk
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sgliteGen/nli/annosrc/db/ct
metaDataSrc = "/mnt/cpb_anno/mcarlson/proj/sgliteGen/nli/annosrc/c

printSchema = TRUE)

## End (Not run)

POPHUMANCHIPDB Populates an SQLite DB with and produces a schema definition

Description

Creates SQLite file useful for making a SQLite based annotation package. Also produces the
schema file which details the schema for the database produced.

Usage

POPHUMANCHIPDB (affy, prefix, fileName, chipMapSrc, chipSrc, metaDataSrc,

otherSrc,

Arguments

affy

prefix

fileName

chipMapSrc

chipSrc

metaDataSrc

baseMapType, outputDir, printSchema)

Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix is the first part of the eventual desired package name. (ie. "prefix.sqlite")

The path and filename for the file to be parsed. This can either be an affy csv
file or it can be a more classic file type.

The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other.

The path and filename to the intermediate database containing the annotation
data for the sqlite to build.

Either a named character vector containing pertinent information about the meta-
data OR the path and filename to the intermediate database containing the meta-
data information for the package.

If this is a custom package, then it must be a named vector with the following
fields:



24

popHUMANCHIPDB

metaDataSrc <- ¢( DBSCHEMA="the DB schema", ORGANISM="the organ-
ism", SPECIES="the species", MANUFACTURER="the manufacturer", CHIP-
NAME-="the chipName", MANUFACTURERURL="the manufacturerUrl")

otherSrc The path and filenames to any other lists of IDs which might add information
about how a probe will map.

baseMapType The type of ID that is used for the initial base mapping. If using a classic base
mapping file, this should be the ID type present in the fileName. This can be
any of the following values: "gb" = for genbank IDs "ug" = unigene IDs "eg"
= Entrez Gene IDs "refseq" = refseq IDs "gbNRef" = mixture of genbank and
refseq IDs

outputDir Where you would like the output files to be placed.

printSchema Boolean to indicate whether or not to produce an output of the schema (default
is FALSE).

Examples

## Not run:

##Set up the metadata

my_metaDataSrc <- c( DBSCHEMA="the DB schema",
ORGANISM="the organism",
SPECIES="the species",
MANUFACTURER="the manufacturer",
CHIPNAME="the chipName",
MANUFACTURERURL="the manufacturerUrl")

##Builds the org.Hs.eg sglite:
POPHUMANCHIPDB (af fy=TRUE,
prefix="hgu95av2",

fileName="/mnt/cpb_anno/mcarlson/proj/sgliteGen/srcFiles/hgu95av2/HG_U9"
chipMapSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/chipn
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/chipsrc_

metaDataSrc = my_metaDataSrc,
otherSrc=c (

EA="/mnt/cpb_anno/mcarlson/proj/sqliteGen/srcFiles/hgu95av2/hgu95av2.F
UMICH="/mnt/cpb_anno/mcarlson/proj/sqgliteGen/srcFiles/hgu95av2/hgu95av

printSchema=TRUE)

##0r if the package is a standard package (it probably isn't):
POPHUMANCHIPDB (affy=TRUE,
prefix="hgu95av2",

## End (Not run)

fileName="/mnt/cpb_anno/mcarlson/proj/sqgliteGen/srcFiles/hgu95av2/HG_U9"

chipMapSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/chipn
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/chipsrc_
metaDataSrc = "/mnt/cpb_anno/mcarlson/proj/sqgliteGen/nli/annosrc/db/mete

otherSrc=c (
EA="/mnt/cpb_anno/mcarlson/proj/sqliteGen/srcFiles/hgu95av2/hgu95av2.F
UMICH="/mnt/cpb_anno/mcarlson/proj/sqgliteGen/srcFiles/hgu95av2/hgu95av
printSchema=TRUE)



popHUMANDB 25

POopHUMANDB Populates an SQLite DB with and produces a schema definition

Description
Creates SQLite file useful for making a SQLite based annotation package. Also produces the
schema file which details the schema for the database produced.

Usage

POpPHUMANDB (prefix, chipSrc, metaDataSrc, outputDir, printSchema)

Arguments
prefix prefix is the first part of the eventual desired package name. (ie. "prefix.sqlite")
chipSrc The path and filename to the intermediate database containing the annotation

data for the sqlite to build.

metaDataSrc Either anamed character vector containing pertinent information about the meta-
data OR the path and filename to the intermediate database containing the meta-
data information for the package.
If this is a custom package, then it must be a named vector with the following
fields:
metaDataSrc <- ¢( DBSCHEMA="the DB schema", ORGANISM="the organ-
ism", SPECIES="the species", MANUFACTURER="the manufacturer", CHIP-
NAME-="the chipName", MANUFACTURERURL="the manufacturerUrl")

outputDir Where you would like the output files to be placed.
printSchema Boolean to indicate whether or not to produce an output of the schema (default
is FALSE).
Examples
## Not run:

##Set up the metadata

my_metaDataSrc <- c( DBSCHEMA="the DB schema",
ORGANISM="the organism",
SPECIES="the species",
MANUFACTURER="the manufacturer",
CHIPNAME="the chipName",
MANUFACTURERURL="the manufacturerUrl")

##Builds the org.Hs.eg sqglite:

POPHUMANDB (prefix="org.Hs.eg",
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sgliteGen/nli/annosrc/db/chipsrc_hume
metaDataSrc = my_metaDataSrc,
printSchema=TRUE)

##0r if the package is a standard package (it probably isn't):

##Builds the org.Hs.eg sglite:

POPHUMANDB (prefix="org.Hs.eg",
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sgliteGen/nli/annosrc/db/chipsrc_hume
metaDataSrc = "/mnt/cpb_anno/mcarlson/proj/sgliteGen/nli/annosrc/db/metadate



26 popYEASTCHIPDB

printSchema=TRUE)
## End (Not run)

POPYEASTCHIPDB Populates an SQLite DB with and produces a schema definition

Description
Creates SQLite file useful for making a SQLite based annotation package. Also produces the
schema file which details the schema for the database produced.

Usage

POpPYEASTCHIPDB (affy, prefix, fileName, chipSrc, metaDataSrc,
outputDir, printSchema)

Arguments

affy Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix prefix is the first part of the eventual desired package name. (ie. "prefix.sqlite")

fileName The path and filename for the file to be parsed. This can either be an affy csv
file or it can be a more classic file type.

chipSrc The path and filename to the intermediate database containing the annotation

data for the sqlite to build.

metaDataSrc Either a named character vector containing pertinent information about the meta-
data OR the path and filename to the intermediate database containing the meta-
data information for the package.

If this is a custom package, then it must be a named vector with the following
fields:

metaDataSrc <- ¢( DBSCHEMA="the DB schema", ORGANISM="the organ-
ism", SPECIES="the species", MANUFACTURER="the manufacturer", CHIP-
NAME-="the chipName", MANUFACTURERURL="the manufacturerUrl")

outputDir Where you would like the output files to be placed.

printSchema Boolean to indicate whether or not to produce an output of the schema (default
is FALSE).

Examples

## Not run:

##Set up the metadata

my_metaDataSrc <- c( DBSCHEMA="the DB schema",
ORGANISM="the organism",
SPECIES="the species",
MANUFACTURER="the manufacturer",
CHIPNAME="the chipName",
MANUFACTURERURL="the manufacturerUrl")

##Builds the ag sqglite:



wrapBaseDBPackages 27

POPYEASTCHIPDB (af fy=TRUE,
fileName="/mnt/cpb_anno/mcarlson/proj/sgliteGen/srcFiles/yeast2/Yeast_2_
prefix="yeast2",
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/chipsrc_
metaDataSrc = my_metaDataSrc,
printSchema=TRUE)

##0r if the package i1s a standard package (it probably isn't):

POPYEASTCHIPDB (af fy=TRUE,
fileName="/mnt/cpb_anno/mcarlson/proj/sgliteGen/srcFiles/yeast2/Yeast_2_
prefix="yeast2",
chipSrc = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/chipsrc_
metaDataSrc = "/mnt/cpb_anno/mcarlson/proj/sqgliteGen/nli/annosrc/db/mete
printSchema=TRUE)

## End (Not run)

wrapBaseDBPackages Wrap up all the Base Databases into Packages for distribution

Description

Creates extremely simple packages from the base database files for distribution. This is a conve-
nience function for wrapping up these packages in a consistent way each time.

Usage
wrapBaseDBPackages (dbPath, destDir, version)

Arguments

dbPath dbPath is just the path to the location of the latest intermediate sqlite source files.

These files are then used to make base DB packages.

destDir destination path for the newly minted packages.

version version number to stamp onto these newly minted packages.
Examples

## Not run:
##Make all of the intermediate DBs and place the new packages right here.
wrapBaseDBPackages (dbPath = "/mnt/cpb_anno/mcarlson/proj/sqgliteGen/nli/annosrc/db/",
destDir = ".")
## End(Not run)



28 toSQLStringSet

toSQLStringSet Convert a vector to a quoted string for use as a SQL value list

Description

Given a vector, this function returns a string with each element of the input coerced to character,

non

quoted, and separated by ",".

Usage

toSQLStringSet (names)

Arguments

names A vector of values to quote

Details

If names is a character vector with elements containing single quotes, these quotes will be doubled
so as to escape the quote in SQL.

Value

A character vector of length one that represents the input vector as a SQL value list. Each element
is single quoted and elements are comma separated.

Note

Do not use sQuote for generating SQL as that function is intended for display purposes only. In
some locales, sQuote will generate fancy quotes which will break your SQL.

Author(s)

Herve Pages

Examples

toSQLStringSet (letters[1:4])
toSQLStringSet (c("'foo'", "ab'cd", "bar"))



unlist2 29

unlist? A replacement for unlist() that does not mangle the names

Description

unlist?2 is areplacement for base: :unlist () that does not mangle the names.

Usage

unlist2 (x, recursive=TRUE, use.names=TRUE, what.names="inherited")

Arguments

X, recursive, use.names
See 2unlist.

what .names "inherited" or "full".

Details

Use this function if you don’t like the mangled names returned by the standard unlist function
from the base package. Using unlist with annotation data is dangerous and it is highly recom-
mended to use unlist2 instead.

Author(s)

Herve Pages

See Also

unlist

Examples

x <- list (A=c(b=-4, 2, b=7), B=3:-1, c(a=1, a=-2), C=list(c(2:-1, d=55), e=99))
unlist (x)
unlist?2 (x)

library (hgu95av2.db)
egids <- c("10", "100", "1000")
egids2pbids <- mget (egids, revmap (hgu95av2ENTREZID) )

egids2pbids

unlist (egids2pbids) # 1001, 1002, 10001 and 10002 are not real
# Entrez ids but are the result of unlist ()
# mangling the names!

unlist2 (egids2pbids) # much cleaner! yes the names are not unique

# but at least they are correct...



Index

*Topic classes
AnnDbObj-objects, 2
AnnDbPkg-maker, 5
Bimap, 13
GOTerms—-class, 16

+Topic interface
AnnDbBimap-envirAPI, 1
Bimap, 13

+Topic manip
toSQLStringSet, 28
unlist2,29

*Topic methods
AnnDbBimap-envirAPI, 1
AnnDbObj-objects, 2
AnnDbPkg-maker, 5
Bimap-direction, 6
Bimap-keys, 8
Bimap-toTable, 10
BimapFormatting, 16
GOTerms—-class, 16

+Topic utilities
AnnDbPkg-checker, 4
AnnDbPkg-maker, 5
makeARABIDOPSISCHIP_DB, 18
makeHUMANCHIP_DB, 19
makeYEASTCHIP_DB, 21
POpARABIDOPSISCHIPDB, 22
pPOopHUMANCHIPDE, 23
POpPHUMANDB, 25
pPOPYEASTCHIPDB, 26
toSQLStringSet, 28
unlist2, 29
wrapBaseDBPackages, 27

[,Bimap-method (Bimap-keys), 8

[[,AnnDbBimap-method

(AnnDbBimap—-envirAPI), 1
$, AnnDbBimap-method
(AnnDbBimap-envirAPI), 1

AgiAnnDbMap (Bimap), 13
AgiAnnDbMap-class (Bimap), 13
AnnDbBimap, I, 2,7

AnnDbBimap (Bimap), 13
AnnDbBimap-envirAPI, 9

30

AnnDbBimap-class (Bimap), 13
AnnDbBimap-envirAPI, 1,8, 10, 12, 15,
16
AnnDbMap (Bimap), 13
AnnDbMap-class (Bimap), 13
AnnDbObj (AnnDbOb j—ob jects), 2
AnnDbObj-class
(AnnDbOb j—-objects), 2
AnnDbObj-objects, 2
AnnDbPkg-checker, 4, 5
AnnDbPkg-maker, 4, 5
AnnDbPkgSeed (AnnDbPkg-maker), 5
AnnDbPkgSeed-class
(AnnDbPkg-maker), 5
as.character, AnnDbBimap-method
(BimapFormatting), 16
as.list (BimapFormatting), 16
as.list,AgiAnnDbMap-method
(BimapFormatting), 16
as.list, AnnDbBimap-method
(BimapFormatting), 16
as.list,Bimap-method
(BimapFormatting), 16
as.list, GoAnnDbBimap-method
(BimapFormatting), 16
as.list,GOTermsAnnDbBimap-method
(BimapFormatting), 16
as.list, IpiAnnDbMap-method
(BimapFormatting), 16

Bimap, 2, 3,6-12, 13, 16
Bimap-class (Bimap), 13
Bimap-direction, 6, 15
Bimap-keys,8§,8, 15
Bimap-toTable, 10, 10, 15
BimapFormatting, 2,8, 10, 12, 15, 16

cat, 3

checkMAPCOUNTS
(AnnDbPkg—-checker), 4

class:AgiAnnDbMap (Bimap), 13

class:AnnDbBimap (Bimap), 13

class:AnnDbMap (Bimap), 13



INDEX

class

class

class
class
class
class
class

class:

:AnnDbObj

(AnnDbOb j-objects), 2

:AnnDbPkgSeed

(AnnDbPkg-maker), 5

:Bimap (Bimap), 13
:Go3AnnDbBimap (Bimap), 13
:GoAnnDbBimap (Bimap), 13
:GOTerms (GOTerms—class), 16
:GOTermsAnnDbBimap (Bimap),

13
IpiAnnDbMap (Bimap), 13

colmetanames (Bimap—-toTable), 10
colmetanames, AnnDbBimap-method

(Bimap-toTable), 10

colmetanames,FlatBimap-method

(Bimap-toTable), 10

colnames (Bimap-toTable), 10
colnames, AnnDbBimap-method

(Bimap-toTable), 10

colnames,FlatBimap-method

(Bimap-toTable), 10

contents, 2
contents, Bimap-method

count.
count

count

count
count

count

count

count

count

count

count

count

count

count

count

(AnnDbBimap-envirAPI), |
links (Bimap-toTable), 10

.links,Bimap-method

(Bimap-toTable), 10

.links, Go3AnnDbBimap-method

(Bimap-toTable), 10

.mappedkeys (Bimap—keys), 8
.mappedkeys, ANY-method

(Bimap-keys), 8

.mappedkeys, Bimap-method

(Bimap-keys), 8

.mappedLkeys

(Bimap-direction), 6

.mappedLkeys, AgiAnnDbMap-method

(Bimap-direction), 6

.mappedLkeys, AnnDbBimap-method

(Bimap-direction), 6

.mappedLkeys, Bimap-method

(Bimap-direction), 6

.mappedLkeys, Go3AnnDbBimap-method

(Bimap-direction), 6

.mappedRkeys

(Bimap-direction), 6

.mappedRkeys, AnnDbBimap-method

(Bimap-direction), 6

.mappedRkeys, AnnDbMap-method

(Bimap-direction), 6

.mappedRkeys, Bimap-method

(Bimap-direction), 6

31

count .mappedRkeys, Go3AnnDbBimap-method
(Bimap-direction), 6

dbconn (AnnDbObj—objects), 2
dbconn, AnnDbOb j—-method
(AnnDbOb j-objects), 2
dbconn, environment-method
(AnnDbOb j—objects), 2
dbConnect, 3
dbfile (AnnDbObj—-objects),2
dbfile, AnnDbObj-method
(AnnDbOb j—-objects), 2
dbfile,environment-method
(AnnDbOb j-objects), 2
dbGetQuery, 3
dbInfo (AnnDbObj—objects), 2
dbInfo, AnnDbObj-method
(AnnDbOb j-objects), 2
dbInfo,DBIConnection-method
(AnnDbOb j-objects), 2
dbInfo, environment-method
(AnnDbOb j-objects), 2
dbListFields, 3
dbListTables, 3
dbmeta (AnnDbOb j—objects), 2
dbmeta, AnnDbObj-method
(AnnDbOb j-objects), 2
dbmeta, DBIConnection-method
(AnnDbOb j-objects), 2
dbmeta, environment-method
(AnnDbOb j—-objects), 2
dbschema (AnnDbObj-objects), 2
dbschema, AnnDbOb j-method
(AnnDbOb j-objects), 2
dbschema, DBIConnection-method
(AnnDbOb j-objects), 2
dbschema, environment—-method
(AnnDbOb j-objects), 2
Definition (GOTerms-class), 16
Definition, GOTerms-method
(GOTerms—class), 16
dim, Bimap-method (Bimap-toTable),
10
direction, 9
direction (Bimap-direction), 6
direction, AnnDbBimap-method
(Bimap-direction), 6
direction,FlatBimap-method
(Bimap-direction), 6
direction<- (Bimap—-direction), 6
direction<-, AnnDbBimap-method
(Bimap-direction), 6



32

direction<-, AnnDbMap-method
(Bimap-direction), 6

direction<-,FlatBimap-method
(Bimap-direction), 6

eapply, 2

eapply (AnnDbBimap-envirAPI), 1

eapply,Bimap-method
(AnnDbBimap—-envirAPI), 1

exists, 2

exists (AnnDbBimap-envirAPI), 1

exists, ANY, ANY, Bimap-method
(AnnDbBimap-envirAPI), 1

exists,ANY,Bimap,missing-method
(AnnDbBimap—-envirAPI), 1

get, 2
get (AnnDbBimap—-envirAPI), 1
get, ANY, AnnDbBimap, missing-method
(AnnDbBimap-envirAPI), 1
get, ANY, ANY, AnnDbBimap-method
(AnnDbBimap-envirAPI), 1
Go3AnnDbBimap (Bimap), 13
Go3AnnDbBimap-class (Bimap), 13
GoAnnDbBimap (Bimap), 13
GoAnnDbBimap-class (Bimap), 13
GOID (GOTerms—-class), 16
GOID, GOTerms—-method
(GOTerms—-class), 16
GOTerms (GOTerms—class), 16
GOTerms—-class, 16
GOTermsAnnDbBimap (Bimap), 13
GOTermsAnnDbBimap-class (Bimap),
13

head, 11

head (Bimap-toTable), 10

head, FlatBimap-method
(Bimap-toTable), 10

initialize, GOTerms—-method
(GOTerms—-class), 16
IpiAnnDbMap (Bimap), 13
IpiAnnDbMap-class (Bimap), 13
isNA (Bimap-keys), 8
isNA, ANY-method (Bimap-keys), 8
isNA, Bimap-method (Bimap-keys), 8
isNA, environment-method
(Bimap-keys), 8

keyname (Bimap-toTable), 10
keyname, Bimap-method
(Bimap-toTable), 10

INDEX

keys, 7

keys (Bimap-keys), 8

keys,Bimap-method (Bimap-keys), 8

keys<- (Bimap-keys), 8

keys<-, Bimap-method (Bimap-keys),
8

length,Bimap-method (Bimap-keys),
8
links (Bimap-toTable), 10
links, AnnDbBimap-method
(Bimap-toTable), 10
links,FlatBimap-method
(Bimap-toTable), 10
links, Go3AnnDbBimap-method
(Bimap-toTable), 10
Lkeyname (Bimap-toTable), 10
Lkeyname, AnnDbBimap-method
(Bimap-toTable), 10
Lkeyname, Bimap-method
(Bimap-toTable), 10
Lkeys (Bimap—-direction), 6
Lkeys, AnnDbBimap-method
(Bimap-direction), 6
Lkeys,FlatBimap-method
(Bimap-direction), 6
Lkeys<- (Bimap-direction), 6
Lkeys<—, AnnDbBimap-method
(Bimap-direction), 6
Lkeys<—,FlatBimap-method
(Bimap-direction), 6
Llength (Bimap-direction), 6
Llength, AnnDbBimap-method
(Bimap-direction), 6
Llength, Bimap-method
(Bimap-direction), 6
loadAnnDbPkgIndex
(AnnDbPkg-maker), 5
1s,2
1s (AnnDbBimap—-envirAPI), 1
1ls,Bimap-method
(AnnDbBimap-envirAPI), 1

make_eg_to_go_map, 18
make_go_to_eg_map
(make_eqg_to_go_map), 18
makeAnnDbPkg (AnnDbPkg-maker), 5
makeAnnDbPkg, AnnDbPkgSeed-method
(AnnDbPkg-maker), 5
makeAnnDbPkg, character-method
(AnnDbPkg-maker), 5
makeAnnDbPkg, list-method
(AnnDbPkg-maker), 5



INDEX

makeARABIDOPSISCHIP_DB, 18
makeBOVINECHIP_DB
(makeHUMANCHIP_DB), 19
makeCANINECHIP_DB
(makeHUMANCHIP_DB), 19
makeCHICKENCHIP_DB
(makeHUMANCHIP_DB), 19
makeECOLICHIP_DB
(makeHUMANCHIP_DB), 19
makeFLYCHIP_DB
(makeHUMANCHIP_DB), 19
makeHUMANCHIP_DB, 19
makeMOUSECHIP_DB
(makeHUMANCHIP_DB), 19
makePIGCHIP_DB
(makeHUMANCHIP_DB), 19
makeRATCHIP_DB
(makeHUMANCHIP_DB), 19
makeWORMCHIP_DB
(makeHUMANCHIP_DB), 19
makeYEASTCHIP_DB, 21
makeZEBRAFISHCHIP_DB
(makeHUMANCHIP_DB), 19
mappedkeys (Bimap-keys), 8
mappedkeys, Bimap-method
(Bimap-keys), 8
mappedkeys, environment-method
(Bimap-keys), 8
mappedkeys, vector-method
(Bimap-keys), 8
mappedlLkeys (Bimap-direction), 6
mappedLkeys, AgiAnnDbMap-method
(Bimap-direction), 6
mappedLkeys, AnnDbBimap-method
(Bimap-direction), 6
mappedLkeys,FlatBimap—-method
(Bimap-direction), 6
mappedLkeys, Go3AnnDbBimap-method
(Bimap-direction), 6
mappedRkeys (Bimap-direction), 6
mappedRkeys, AnnDbBimap-method
(Bimap-direction), 6
mappedRkeys, AnnDbMap-method
(Bimap-direction), 6
mappedRkeys, FlatBimap-method
(Bimap-direction), 6
mappedRkeys, Go3AnnDbBimap-method
(Bimap-direction), 6
mget, 2
mget (AnnDbBimap-envirAPI), 1
mget, AnnDbBimap-method
(AnnDbBimap-envirAPI), 1

33

mget, ANY, AnnDbBimap-method
(AnnDbBimap-envirAPI), 1

ncol (Bimap-toTable), 10
ncol,Bimap-method
(Bimap-toTable), 10
nhit (Bimap-toTable), 10
nhit, Bimap-method
(Bimap-toTable), 10
nhit,environment-method
(Bimap-toTable), 10
nhit,list-method (Bimap-toTable),
10
nrow (Bimap-toTable), 10
nrow, AnnDbBimap-method
(Bimap-toTable), 10
nrow, AnnDbTable-method
(Bimap-toTable), 10
nrow, FlatBimap-method
(Bimap-toTable), 10
nrow, Go3AnnDbBimap-method
(Bimap-toTable), 10

Ontology (GOTerms—class), 16
Ontology, GOTerms—method
(GOTerms—class), 16

POopARABIDOPSISCHIPDBR, 22

POpPBOVINECHIPDB (popHUMANCHIPDB),
23

POpPBOVINEDB (popHUMANDB), 25

POpCANINECHIPDB (popHUMANCHIPDB),
23

POpCANINEDB (popHUMANDB), 25

POPCHICKENCHIPDB
(PopHUMANCHIPDB), 23

POopCHICKENDB (popHUMANDB), 25

POPECOLICHIPDB (popHUMANCHIPDB),
23

POPECOLIDB (popHUMANDB), 25

POPFLYCHIPDB (popHUMANCHIPDB), 23

POpFLYDB (popHUMANDB), 25

POPHUMANCHIPDBE, 23

pPOPHUMANDB, 25

POPMALARIADB (popHUMANDB), 25

POPMOUSECHIPDB (popHUMANCHIPDB),
23

POPMOUSEDB (popHUMANDB), 25

pPOpPIGCHIPDB (popHUMANCHIPDB), 23

popPIGDB (popHUMANDB), 25

POPRATCHIPDB (popHUMANCHIPDB), 23

POpPRATDB (popHUMANDB), 25

POPWORMCHIPDB (popHUMANCHIPDB), 23



34 INDEX

POPWORMDB (popHUMANDB), 25 Rlength, Bimap-method

POPYEASTCHIPDB, 26 (Bimap-direction), 6

POPYEASTDB (popHUMANDB), 25 Rlength, Go3AnnDbBimap-method

POPZEBRAFISHCHIPDB (Bimap-direction), 6
(popHUMANCHIPDB), 23

POPZEBRAF ISHDB (popHUMANDB), 25 sample, 2

sample (AnnDbBimap—-envirAPI), 1
sample, Bimap-method
(AnnDbBimap-envirAPI), 1
sample, environment-method
(AnnDbBimap-envirAPI), 1
Secondary (GOTerms-class), 16
Secondary, GOTerms—method
(GOTerms—class), 16
show, AnnDbBimap-method (Bimap), 13
show, AnnDbTable-method
(Bimap-keys), 8
show, FlatBimap-method (Bimap), 13
show, GOTerms—-method
(GOTerms—-class), 16
subset (Bimap-direction), 6
subset, AnnDbBimap-method
(Bimap-direction), 6
subset, Bimap-method
(Bimap-direction), 6
summary, AnnDbBimap-method
(Bimap), 13
summary, Bimap-method (Bimap), 13
Synonym (GOTerms—class), 16
Synonym, GOTerms—-method
(GOTerms—-class), 16

Rattribnames (Bimap-toTable), 10
Rattribnames, AnnDbBimap-method
(Bimap-toTable), 10

Rattribnames, Bimap-method
(Bimap—-toTable), 10
Rattribnames<- (Bimap-toTable), 10
Rattribnames<-, AnnDbBimap-method
(Bimap-toTable), 10
Rattribnames<-,FlatBimap-method
(Bimap-toTable), 10

Rattribnames<-, Go3AnnDbBimap-method
(Bimap-toTable), 10
revmap (Bimap-direction), 6
revmap, AnnDbBimap-method
(Bimap-direction), 6
revmap, Bimap-method
(Bimap-direction), 6
revmap, environment-method
(Bimap-direction), 6
revmap, list-method
(Bimap-direction), 6
Rkeyname (Bimap—-toTable), 10
Rkeyname, AnnDbBimap-method
(Bimap-toTable), 10
Rkeyname, Bimap—-method

tagname (Bimap-toTable), 10
(Bimap-toTable), 10

tagname, AnnDbBimap-method

Rkeys (Bimap-direction), 6 (Bimap-toTable), 10
Rkeys, AnnDbBimap-method tagname, Bimap-method
(Bimap-direction), 6 (Bimap—toTable), 10
Rkeys, AnnDbMap-method tail, 11
(Bimap-direction), 6 tail (Bimap-toTable), 10
Rkeys, FlatBimap-method tail,FlatBimap-method
(Bimap-direction), 6 (Bimap—toTable), 10
Rkeys, Go3AnnDbBimap-method Term (GOTerms—class), 16
(Bimap-direction), 6 Term, GOTerms-method
Rkeys<- (Bimap-direction), 6 (GOTerms-class), 16
Rkeys<—, AnnDbBimap-method toSQLStringSet, 28
(Bimap-direction), 6 toTable (Bimap-toTable), 10
Rkeys<—,FlatBimap-method toTable, AnnDbBimap-method
(Bimap-direction), 6 (Bimap-toTable), 10
Rlength (Bimap-direction), 6 toTable,FlatBimap-method
Rlength, AnnDbBimap-method (Bimap-toTable), 10
(Bimap-direction), 6
Rlength, AnnDbMap-method unlist, 29

(Bimap-direction), 6 unlist2,29



INDEX

wrapBaseDBPackages, 27

35



	AnnDbBimap-envirAPI
	AnnDbObj-objects
	AnnDbPkg-checker
	AnnDbPkg-maker
	Bimap-direction
	Bimap-keys
	Bimap-toTable
	Bimap
	BimapFormatting
	GOTerms-class
	make_eg_to_go_map
	makeARABIDOPSISCHIP_DB
	makeHUMANCHIP_DB
	makeYEASTCHIP_DB
	popARABIDOPSISCHIPDB
	popHUMANCHIPDB
	popHUMANDB
	popYEASTCHIPDB
	wrapBaseDBPackages
	toSQLStringSet
	unlist2
	Index

