
plethy vignette

Daniel Bottomly

October 14, 2013

1 The plethy package

The goal of the plethy package is to enable efficient import, storage and retrieval of plethysmography and
other related data for statistical analysis in R. Currently, the plethy package contains functionality to parse
.csv files derived from Buxco whole body plethysmography instruments and import the resulting data into
a SQLite database for convenient access. Once created, the database contains an organized representation
of the Buxco file that can be easily queried through pre-defined R code or through lower-level SQL access
using the RSQLite package. One of the features is the ability to add new data and/or annotations based on
existing data within the database without modifying the old data. An example of this is the computation
of the number of days past the first measurement as well as the assignment of experimental labels such as
whether the measurement is part of acclimation or experimental data as is demonstrated below. Subsets of
the data are retrieved in data.frame form for use with statistical analysis software packages in R such as
nlme.

2 Exporting the Buxco CSV file

The Buxco Whole Body Plethysmographer is run through the Finepointe software suite (Buxco Research
Systems, Wilmington, NC). Finepointe has explicit experimental set-up tools that should be used to set up
the structure of the Buxco experiment. We suggest setting the number of measurments output to be every
2 seconds as opposed to every 150 events during this experimental set-up. Experimental treatments (e.g.
viral infection) can alter respiratory function and animal activity, which impacts the number of extracted
datapoints if events are used, as opposed to time. Following completion of the experiment, data can be
extracted as a .csv or .txt file from the tool menu in Finepointe. Depending on whether the user included
gas analysis or other measures during their study, the user might need to trim some header lines from the
extracted file before being useable in plethy.

3 Description of the Buxco file format

The parsing code contained within this package is designed to handle Buxco files which contain data of the
form:

Time,Subject,Phase,Recording,f,TVb,MVb,Penh,PAU,Rpef,Comp,PIFb,PEFb,Ti,Te,EF50,Tr,Tbody,Tc,RH,Rinx

Which is further organized into subsections containing either experimental or acclimation data based on the
following pattern:

table.delim table name
header line
acclimation (ACC) for animal 1
burn.in.lines

acclimation (ACC) for animal 2
experimental readings (EXP) for animal 1

1

burn.in.lines

acclimation (ACC) for animal 3
experimental readings (EXP for animal 2

Where the indicated lines correspond to default parameters in the current implementation of the parse.buxco
function. Unless the file format changes, these should not have to be modified.

4 An initial example

To begin we will parse the example file ’BuxcoR sample.csv’ into an SQLite database. Note that the
chunk.size parameter controls the number of lines read in at a given time. Although this can be use-
ful for limiting the memory consumption of the program at the expense of runtime, there is a limit to its
benefit as the data for several entire file sections are currently held in memory at a given time.

> file.name <- buxco.sample.data.path()

> chunk.size <- 500

> db.name <- file.path(tempdir(), "bux_test.db")

> parse.buxco(file.name=file.name, chunk.size=chunk.size, db.name=db.name, verbose=FALSE)

>

The resulting database (bux test.db) can be accessed conveniently through an S4 object oriented interface
where a BuxcoDb object can be create and accessed through several defined methods. For instance the
defined samples, variables and tables can be retrieved from the database as follows:

> bux.db <- makeBuxcoDB(db.name=db.name)

> samples(bux.db)

[1] "8034x13140_1" "8034x13140_10" "8034x13140_11" "8034x13140_2"

[5] "8034x13140_3" "8034x13140_4" "8034x13140_5" "8034x13140_9"

> variables(bux.db)

[1] "Comp" "EF50" "MVb" "PAU" "PEFb" "PIFb" "Penh" "RH" "Rinx"

[10] "Rpef" "TVb" "Tbody" "Tc" "Te" "Ti" "Tr" "f"

> tables(bux.db)

[1] "WBPth"

>

Also, we can retrieve data for analysis. This is done most conveniently through the retrieveData method.
This method without any arguments will retrieve all the data and return it in a data.frame. This can take
a lot of memory and will be a little slower than specifying the data subsets the user is interested in. By
passing in character or numeric variables as arguments to the method as shown below then smaller subsets
of the data can be retrieved quickly and then be used for downstream statistical or graphical analysis.

> data.1 <- retrieveData(bux.db, samples="8034x13140_1", variables="Penh")

> head(data.1)

Sample_Name P_Time Break_sec_start Variable_Name Bux_table_Name

1 8034x13140_1 2012-09-28 10:07:17 0 Penh WBPth

2 8034x13140_1 2012-09-28 10:07:19 0 Penh WBPth

3 8034x13140_1 2012-09-28 10:07:21 2 Penh WBPth

4 8034x13140_1 2012-09-28 10:07:23 4 Penh WBPth

5 8034x13140_1 2012-09-28 10:07:25 6 Penh WBPth

2

6 8034x13140_1 2012-09-28 10:07:27 8 Penh WBPth

Rec_Exp_date Break_number Value

1 D-3 5 0.7851210

2 D-3 6 0.7239651

3 D-3 6 0.8044858

4 D-3 6 0.5304968

5 D-3 6 0.4664128

6 D-3 6 0.7347313

>

values can also be specified as vectors

> data.2 <- retrieveData(bux.db, samples=c("8034x13140_1", "8034x13140_10"), variables=c("Penh", "f"))

> head(data.2)

Sample_Name P_Time Break_sec_start Variable_Name Bux_table_Name

1 8034x13140_1 2012-09-28 10:07:17 0 f WBPth

2 8034x13140_1 2012-09-28 10:07:17 0 Penh WBPth

3 8034x13140_1 2012-09-28 10:07:19 0 f WBPth

4 8034x13140_1 2012-09-28 10:07:19 0 Penh WBPth

5 8034x13140_1 2012-09-28 10:07:21 2 f WBPth

6 8034x13140_1 2012-09-28 10:07:21 2 Penh WBPth

Rec_Exp_date Break_number Value

1 D-3 5 598.2654419

2 D-3 5 0.7851210

3 D-3 6 582.1941528

4 D-3 6 0.7239651

5 D-3 6 606.6564941

6 D-3 6 0.8044858

> table(data.1$Sample_Name, data.1$Variable_Name)

Penh

8034x13140_1 151

>

Note that at this point the data in the database consists of values directly parsed from the raw file. Adding
additional labels or computations can be done through the addAnnotation method by specifying the BuxcoDB
object and a function returning the SQL query. There are currently two functions that are defined, though
users can define their own as well with some familiarity of the database structure. The first, day.infer.query
computes the number of days past the first measurement for a given animal. The second break.type.query

labels the measurements as ’ACC’ for acclimation, ’EXP’ for experimental, ’UNK’ for unknown (where there
is only one set of measurements for a given animal and given time point) or ’ERR’ which likely represents
an error in the parsing or query. Examples are shown below.

> addAnnotation(bux.db, query=day.infer.query, index=FALSE)

[1] TRUE

> addAnnotation(bux.db, query=break.type.query, index=TRUE)

[1] TRUE

>

3

The index argument specifies whether an index should be added to the columns. There should not really
be any harm in adding them at each stage though as the method tries to create a set of covering indices
to maximize retrieval speed, I would recommend waiting until the last call to addAnnotation. Again we
can extract the data as before using retrieveData though this time in order to specify constraints on any
column defined through addAnnotation we need to type in the column name and the constraint vector at
the end.

For this it is useful to figure out the names and different values of the annotation columns.

> annoCols(bux.db)

[1] "Days" "Break_type_label"

> annoLevels(bux.db)

$Days

[1] 0

$Break_type_label

[1] "ACC" "EXP"

>

First we can get data as before and examine its structure.

> data.3 <- retrieveData(bux.db, samples="8034x13140_2", variables="Penh")

> with(data.3, table(Days, Break_type_label))

Break_type_label

Days ACC EXP

0 1 150

>

Similar to above but placing constraints on the annotation columns.

> data.4 <- retrieveData(bux.db, samples="8034x13140_2", variables="Penh", Days = 0)

> with(data.4, table(Days, Break_type_label))

Break_type_label

Days ACC EXP

0 1 150

> data.5 <- retrieveData(bux.db, samples="8034x13140_2", variables="Penh", Days = 0,

+ Break_type_label = 'EXP')

> with(data.5, table(Days, Break_type_label))

Break_type_label

Days EXP

0 150

>

Putting it all together we can easily perform descriptive analyses comparing the different samples using the
enhanced pause (Penh) phenotype.

> exp.penh <- retrieveData(bux.db, variables="Penh", Break_type_label = 'EXP')

> head(exp.penh)

4

Sample_Name P_Time Break_sec_start Variable_Name Bux_table_Name

1 8034x13140_5 2012-09-28 10:07:19 0 Penh WBPth

2 8034x13140_5 2012-09-28 10:07:21 2 Penh WBPth

3 8034x13140_5 2012-09-28 10:07:23 4 Penh WBPth

4 8034x13140_5 2012-09-28 10:07:25 6 Penh WBPth

5 8034x13140_5 2012-09-28 10:07:27 8 Penh WBPth

6 8034x13140_5 2012-09-28 10:07:29 10 Penh WBPth

Rec_Exp_date Break_number Days Break_type_label Value

1 D-3 2 0 EXP 0.9725345

2 D-3 2 0 EXP 1.0310636

3 D-3 2 0 EXP 0.9750971

4 D-3 2 0 EXP 0.6979190

5 D-3 2 0 EXP 0.6075242

6 D-3 2 0 EXP 0.8080077

> boxplot(Value~Sample_Name, data=exp.penh)

>

●

●

●
●●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●
● ●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

8034x13140_1 8034x13140_2 8034x13140_5

0.
5

1.
0

1.
5

2.
0

2.
5

> plot(Value~Break_sec_start, data=exp.penh, subset=Sample_Name=="8034x13140_5", type="l",

+ xlab="Seconds past start")

>

5

0 50 100 150 200 250 300

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Seconds past start

V
al

ue

6

