
Analyzing microbial gene survey data with
metaR

Joseph Nathaniel Paulson

Center for Bioinformatics and Computational Biology
University of Maryland, College Park

jpaulson@umiacs.umd.edu

February 27, 2013

Contents

1 Introduction 2

2 Data structure 2
2.1 Loading count and meta data . 3
2.2 Creating a MRexperiment object . 3

3 Normalization 5
3.1 Calculating normalization factors . 5
3.2 Exporting data . 5

4 Zero-inflated Gaussian mixture model 6
4.1 Mathematical model . 6
4.2 Running the statistical analysis . 7

5 Visualization of features 9

6 Summary 10

1

1 Introduction

Metagenomics is the study of genetic material targeted directly from an environmental
community. Originally focused on exploratory and validation projects, these studies now
focus on understanding the differences in microbial communities caused by phenotype dif-
ferences. Analyzing high-throughput sequencing data has been a challenge to researchers
due to the unique biological and technological biases that are present in marker-gene
survey data.

Metastats and Lefse are two statistical methods addressing differential abundance
detection in clinical metagenomic datasets. White et al.’s Metastats used a non-parametric
permutation test on t-statistics and Segata et al.’s Lefse used a non-parametric Kruskal-
Wallis test followed by subsequent wilcox rank-sum tests on subgroups to guard against
positive discoveries of differential abundance driven by potential confounders. We present
a R package, metaR (metagenomic analysis in R), that implements methods developed to
account for previously unaddressed biases specific to high-throughput sequencing marker-
gene survey data.

This vignette is meant to describe the software package metaR. A normalization
method is implemented to control for biases in measurements across taxanomic features.
We use a mixture model that implements a zero-inflated Gaussian distribution to account
for varying depths of coverage. Using a linear model methodology, it is easy to include con-
founding sources of variability and interpret results. Additionally, visualization functions
are provided to examine discoveries.

The software was designed to determine features (be it Operational Taxanomic Unit
(OTU), species, etc.) that are differentially abundant between two or more groups of mul-
tiple samples. The software was also designed to address the effects of both normalization
and under-sampling of microbial communities on disease association detection and testing
of feature correlations.

2 Data structure

Microbial marker gene sequence data is preprocessed and counts are algorithmically de-
fined from project-specific sequence data by clustering reads according to read similarity.
Given m features and n samples, the elements in a count matrix C (m,n), cij, are the
number of reads annotated for a particular feature i (whether it be OTU, species, genus,
etc.) in sample j.

The S4 class system in R allows for object oriented definitions. metaR makes use of the
Biobase package in Bioconductor and their virtual-class, eSet. Building off of eSet,
the main S4 class in metaR is termed MRexperiment. MRexperiment is a simple
extension of eSet, adding a single slot, expSummary. Experiment summary is a data
frame that includes the depth of coverage and the normalization factors for each sample.
Future datasets can be formated as MRexperiment objects and analyzed with relative
ease. A MRexperiment object is created by calling newMRexperiment, passing the
counts, phenotype and feature data as parameters.

We do not include normalization factors or library size in the currently available slot
specified for the sample specific phenotype data. As expected, all matrices are organized
in the assayData slot. All phenotype data (disease status, age, etc.) is stored in
phenoData and feature data (OTUs, taxanomic assignment to varying levels, etc.) in
featureData. Additional slots are available for reproducibility and annotation.

2

2.1 Loading count and meta data

Following preprocessing and annotation of sequencing data the easiest way to format
the count matrix is to have features (be it OTU, species, genus, etc.) along rows and
samples along the columns. metaR includes functions for loading delimited files of counts
load_meta and phenodata load_phenoData.

As an example, a portion of the lung microbiome OTU matrix is provided in metaR’s
library ”doc” folder. The OTU matrix is stored as a tab delimited file. load_meta loads
the taxa and counts into a list of ”counts” and ”taxa”.

R> library(metaR)
R> dataDirectory <- system.file("doc", package="metaR")
R> lung = load_meta(file.path(dataDirectory,"CHK_NAME.otus.count.csv"))
R> dim(lung$counts)

[1] 1000 78

Next we want to load the annotated taxonomy. Check to make sure that your taxa
annotations and OTUs are in the same order as your matrix rows.

R> taxa = read.csv(file.path(dataDirectory,"CHK_otus.taxonomy.csv"),
sep="\t",header=T,stringsAsFactors=F)[,2]

R> otu = read.csv(file.path(dataDirectory,"CHK_otus.taxonomy.csv"),
sep="\t",header=T,stringsAsFactors=F)[,1]

As our OTUs appear to be in order with the count matrix we loaded earlier, the
next step is to load phenodata. Phenotype data can be optionally loaded into R with
load_phenoData. This function loads data as a list. It is important to properly order
data.

R> clin = load_phenoData(file.path(dataDirectory,"CHK_clinical.csv"),tran=TRUE)
R> ord = match(colnames(lung$counts),rownames(clin))
R> clin = clin[ord,]
R> head(clin[1:2,])

SampleType
CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Bronch2.PreWash
CHK_6467_E3B11_OW_V1V2 OW

SiteSampled
CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Bronchoscope.Channel
CHK_6467_E3B11_OW_V1V2 OralCavity

SmokingStatus
CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Smoker
CHK_6467_E3B11_OW_V1V2 Smoker

2.2 Creating a MRexperiment object

Biobase provides functions to create annotated data frames. phenoData and feature-
Data inputs are required to be annotated data frames. Function newMRexperiment
takes a count matrix, phenoData (annotated data frame), and featureData (annotated
data frame) as input. Library sizes (depths of coverage) and normalization factors are
also optional inputs.

3

R> phenotypeData = as(clin,"AnnotatedDataFrame")
R> phenotypeData

An object of class 'AnnotatedDataFrame'
rowNames:

CHK_6467_E3B11_BRONCH2_PREWASH_V1V2
CHK_6467_E3B11_OW_V1V2 ...
CHK_6467_E3B09_BAL_A_V1V2 (78 total)

varLabels: SampleType SiteSampled
SmokingStatus

varMetadata: labelDescription

A taxa feature annotated data frame. In this example it is simply the OTU numbers,
but it can as easily be the annotated taxonomy at multiple levels.

R> OTUdata = as(lung$taxa,"AnnotatedDataFrame")
R> varLabels(OTUdata) = "taxa"
R> OTUdata

An object of class 'AnnotatedDataFrame'
rowNames: 1 2 ... 1000 (1000 total)
varLabels: taxa
varMetadata: labelDescription

Links to a paper providing further details can be included optionally.

R> counts = lung$counts
R> obj = newMRexperiment(counts,phenoData=phenotypeData,featureData=OTUdata)
R> experimentData(obj) = annotate::pmid2MIAME("21680950")
R> obj

MRexperiment (storageMode: environment)
assayData: 1000 features, 78 samples
element names: counts

protocolData: none
phenoData

sampleNames:
CHK_6467_E3B11_BRONCH2_PREWASH_V1V2
CHK_6467_E3B11_OW_V1V2 ...
CHK_6467_E3B09_BAL_A_V1V2 (78 total)

varLabels: SampleType SiteSampled
SmokingStatus

varMetadata: labelDescription
featureData

featureNames: 1 2 ... 1000 (1000 total)
fvarLabels: taxa
fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
pubMedIds: 21680950

Annotation:

4

3 Normalization

Normalization is required due to variable depths of coverage. We have implemented in
cumNorm a normalization method that calculates normalization factors automatically cal-
culated as the sum of counts less than the percentile that the majority of sample counts
deviate from a reference. These normalization factors are stored in the experiment sum-
mary slot. Functions to determine the proper percentile cumNormStat, save normalized
counts exportMat, or save various sample statistics exportStats are also provided.
Normalized counts can be called easily by cumNormMat(MRexperimentObject) or
MRcounts(MRexperimentObject,norm=TRUE).

3.1 Calculating normalization factors

After defining a MRexperiment object, the first step is to calculate the proper percentile
by which to normalize counts. There are several options in calculating and visualizing the
relative differences in the reference. Figure 1 is an example for the longitudinal gnotobiotic
mouse dataset.

R> data(lungData)
R> p=cumNormStat(lungData)

To calculate the scaling factors we simply run cumNorm

R> cumNorm(lungData,p=p)

[1] TRUE

There are other functions, including normFactors, cumNormMat, that relatively
extract the normalization factors and create a normalized matrix for a specified percentile.
To see a full list of functions please see the manual and help pages.

3.2 Exporting data

Functions are provided to easily retrieve or save normalized count matrices or basic sample
characteristic statistics.

R> mat = MRcounts(lungData,norm=TRUE)[1:5,1:5]
R> exportMat(mat,output=file.path(dataDirectory,"temp.tsv"))

R> exportStats(lungData[,1:5],output=file.path(dataDirectory,"temp.tsv"),p=p)
R> head(read.csv(file=file.path(dataDirectory,"temp.tsv"),sep="\t"))

Subject
1 CHK_6467_E3B11_BRONCH2_PREWASH_V1V2
2 CHK_6467_E3B11_OW_V1V2
3 CHK_6467_E3B08_OW_V1V2
4 CHK_6467_E3B07_BAL_A_V1V2
5 CHK_6467_E3B11_BAL_A_V1V2

Scaling.factor Quantile.value
1 36 4
2 2681 1
3 2390 1
4 897 1

5

Figure 1: Relative difference for the median difference in counts from the reference.
Samples came from the lung dataset (and all were used except the extraction.controls
pData(lungData)$SampleType).

5 802 2
Number.of.features

1 60
2 3299
3 2994
4 1188
5 1098

4 Zero-inflated Gaussian mixture model

The depth of coverage in a sample is directly related to how many features are detected
in a sample motivating our zero-inflated Gaussian (ZIG) mixture model. Figure 2 is rep-
resentative of the sparsity ubiquitous in marker-gene survey datasets currently available.

Function fitZig performs a complex mathematical optimization routine to estimate
probabilities that a zero for a particular feature in a sample is a technical zero or not.
The function relies heavily on the limma package.

4.1 Mathematical model

Defining the class comparison of interest as k(j) = I{j ∈ groupA}. The zero-inflated
model is defined for the continuity-corrected log2 of the count data yij = log2(cij + 1) as
a mixture of a point mass at zero I{0}(yij) and a count distribution fcount(yij;µi, σ

2
i) ∼

N(µi, σ
2
i). Given mixture parameters πj, we have that the density of the zero-inflated

Gaussian distribution for feature i, in sample j with sj total counts is:

fzig(yij; θ) = πj(sj) · I{0}(yij) + (1− πj(sj)) · fcount(yij; θ) (1)

6

Figure 2: The number of unique features is plotted against depth of coverage for samples
from the Human Microbiome Projecthmp. Including the depth of coverage and the
interaction of body site and sequencing site we are able to acheive an adjusted R2 of .94.
The zero-inflated Gaussian mixture was developed to account for missing features.

Maximum-likelihood estimates are approximated using an EM algorithm, where we
treat mixture membership ∆ij = 1 if yij is generated from the zero point mass as latent
indicator variables.

Design matrices can be created in R by using the model.matrix function and are
inputs for fitZig.

For large survey studies it is often pertinent to include phenotype information or con-
founders into a design matrix when testing the association between the abundance of tax-
onomic features and a phenotype phenotype of interest (disease, for instance). Our linear
model methodology can easily incorporate these confounding covariates in a straightfor-
ward manner. fitZig output includes weighted fits for each of the m features. Results
can be filtered and saved using MRcoefs or MRtable. MRfisher tests assumptions
different from the difference in abundance of a feature. Instead, it tests the odds of a
feature being present or absent between two groups.

4.2 Running the statistical analysis

In our analysis of the lung microbiome data, we can remove features that are not present
in many samples and samples that are controls and calculate the normalization fac-
tors. Following the calculation of our normalization factors the user needs to smartly
decide/include pertinent phenotype parameters in a model matrix.

R> data(lungData)
R> k = grep("Extraction.Control",pData(lungData)$SampleType)
R> lungTrim = lungData[,-k]
R> k = which(rowSums(MRcounts(lungTrim)>0)<10)

7

R> lungTrim = lungTrim[-k,]
R> cumNorm(lungTrim)

[1] TRUE

Following the preparation, the user must define a model matrix for the data. There
are optional inputs to fitZig, including the settings found in zigControl and we ask
the user to review the help files for both fitZig and zigControl. For this example we
include body site as covariates and want to test for the bacteria differentially abundant
between smokers and non-smokers.

R> smokingStatus = pData(lungTrim)$SmokingStatus
R> bodySite = pData(lungTrim)$SampleType
R> mod = model.matrix(~smokingStatus+bodySite)
R> settings = zigControl(maxit=10,verbose=TRUE)
R> fit = fitZig(obj = lungTrim,mod=mod,control=settings)

it= 0, nll=88.55, log10(eps+1)=Inf, stillActive=1029
it= 1, nll=93.10, log10(eps+1)=0.07, stillActive=299
it= 2, nll=93.24, log10(eps+1)=0.05, stillActive=130
it= 3, nll=93.46, log10(eps+1)=0.07, stillActive=31
it= 4, nll=93.50, log10(eps+1)=0.05, stillActive=16
it= 5, nll=93.50, log10(eps+1)=0.02, stillActive=10
it= 6, nll=93.57, log10(eps+1)=0.01, stillActive=5
it= 7, nll=93.57, log10(eps+1)=0.00, stillActive=2
it= 8, nll=93.57, log10(eps+1)=0.00, stillActive=1
it= 9, nll=93.57, log10(eps+1)=0.00, stillActive=0

The result, fit, is a list providing detailed estimates of the fits including a limma
fit in fit$fit and an ebayes statistical fit in fit$eb. This data can be analyzed
like any limma fit and in this example, the column of the fitted coefficients represents
the fold-change for our ”smoker” vs. ”nonsmoker” analysis. Often we’re interested in in
the fold change of various features with respect to the a condition. Koch’s postulates
demand an increase in presence and abundance of a particular bacteria. As mentioned
above, Fisher’s test is implemented in MRfisher as a test for presence / absence test.
This tests different assumptions of the 16S count data.

Looking at the particular analysis just performed, there appears to be OTUs rep-
resenting three Prevotella, two Neisseria, and a Porphyromonas that are differentially
abundant.

It is important to check that similarly annotated OTUs are not equally differentially
abundant in controls.

Currently functions are being developed to wrap and output results more neatly, but
MRcoefs and MRfit can be used to view coefficient fits and related statistics.

R> taxa =
sapply(strsplit(as.character(fData(lungTrim)$taxa),split=";"),

function(i){i[length(i)]})
R> head(MRcoefs(fit,taxa=taxa,coef=2))

smokingStatusSmoker
Neisseria polysaccharea:1 -4.130323

8

Neisseria meningitidis:1 -3.991910
Prevotella intermedia:2 -2.858724
Prevotella paludivivens:2 2.697783
Porphyromonas sp. UQD 414:2 -2.695710
Prevotella sp. DJF_B116:1 2.645772

pValue
Neisseria polysaccharea:1 2.137891e-15
Neisseria meningitidis:1 2.055895e-14
Prevotella intermedia:2 9.189296e-12
Prevotella paludivivens:2 6.764197e-09
Porphyromonas sp. UQD 414:2 9.323449e-10
Prevotella sp. DJF_B116:1 1.296822e-10

adjPvalue
Neisseria polysaccharea:1 1.466593e-13
Neisseria meningitidis:1 1.113430e-12
Prevotella intermedia:2 2.781113e-10
Prevotella paludivivens:2 6.609208e-08
Porphyromonas sp. UQD 414:2 1.410857e-08
Prevotella sp. DJF_B116:1 2.696391e-09

5 Visualization of features

Reads clustered with high similarity do not represent functional or taxonomic units. It is
possible that reads from the same organism get clustered into multiple OTUs. metaR has
several plotting functions to visualize abundance differences for a single feature, plotOTU,
and multiple features plotGenus. Plotting multiple OTUs with similar annotations al-
lows for additional control of false discoveries. Other functions allow for an understanding
of structural composition with heatmaps of feature counts plotMRheatmap and basic
feature correlation structures plotCorr.

Many studies hope to compare biological compositions at a community level. Often a
first step of data analysis is a heatmap or some other data exploratory tool, followed by
a correlation or co-occurence heatmap.

R> data(mouseData)
R> trials = pData(mouseData)$diet
R> plotMRheatmap(obj=mouseData,n=200,trials=trials,

cexRow = 0.4,cexCol = 0.4,trace="none")
R> plotCorr(obj=mouseData,n=200,trials=trials,

cexRow = 0.25,cexCol = 0.25,trace="none",dendrogram="none")

Following differential abundance analysis. It is important to confirm differential abun-
dance. One way to limit false positives is ensure that the feature is actually abundant
(enough positive samples). Another way is to plot the abundances of features similarly
annotated. plotOTU allows the user to plot the abundances of one feature separately for
one group versus another.

R> #head(MRtable(fit,coef=2,taxa=1:length(fData(lungTrim)$taxa)))
R> patients=sapply(strsplit(rownames(pData(lungTrim)),split="_"),function(i){i[3]})
R> pData(lungTrim)$patients=patients
R> classIndex=list(controls=which(pData(lungTrim)$SmokingStatus=="Smoker"))
R> classIndex$cases=which(pData(lungTrim)$SmokingStatus=="NonSmoker")

9

Figure 3: Left) Heatmaps and hierarchical clustering of log2 transformed counts for the
200 OTUs with the largest overall variance. Red values indicate counts close to zero.
Row color labels indicate OTU taxonomic class; column color labels indicate diet (green
= high fat, yellow = low fat). Notice the samples cluster by diet in these cases and there
are obvious clusters. Right) Correlation matrix for the same features.

R> otu = 779
R> x = fData(lungTrim)$taxa[otu]
R> plotOTU(lungTrim,otu=otu,classIndex,xaxt="n",

ylab="Normalized log(cpt)",main="Neisseria meningitidis")
R> lablist<- c("Smoker","NonSmoker")
R> axis(1, at=seq(1,2,by=1), labels = lablist)

plotGenus allows the user to plot abundances for several features similarly annotated for the
various groups. At the OTU level reads are potentially clustered to multiple cluster centers
that represent the same organism. It is possible that reads from one group get assigned to one
OTU, and reads from another group are assigned to a different center that represents the same
organism simply due to read similarity. Using plotGenus is one basic method to ensure that
a feature is more likely to be differentially abundant.

R> otulist = grep(x,fData(lungTrim)$taxa)
R> plotGenus(lungTrim,otulist,classIndex,xaxt="n",

ylab="Normalized log(cpt)",main="Neisseria meningitidis")
R> lablist<- c("S","NS")
R> axis(1, at=seq(1,6,by=1), labels = rep(lablist,times=3))

6 Summary

metaR is specifically designed for sparse high-throughput sequencing experiments that
addresses the analysis of differential abundance for marker gene survey data. The package,

10

Figure 4: Left) Plot of the normalized log(cpt) of Neisseria meningitidis, in particular the
779th row of lungTrim’s count matrix. Right) Plot of the normalized log(cpt) of all OTUs
annotated as Neisseria meningitidis. According to this it would appear that Neisseria
meningitidis is differentially abundant and more abundant in nonsmokers.

while designed for marker-gene survey datasets, may be appropriate for other sparse data
sets for which the zero-inflated Gaussian mixture model may apply.

11

	Introduction
	Data structure
	Loading count and meta data
	Creating a MRexperiment object

	Normalization
	Calculating normalization factors
	Exporting data

	Zero-inflated Gaussian mixture model
	Mathematical model
	Running the statistical analysis

	Visualization of features
	Summary

