
Quick start guide for inveRsion package

Alejandro Cáceres, Suzanne Sindi, Ben Raphael,
Mario Cáceres and Juan Ramon González

acaceres@creal.cat

October 14, 2013

Contents

1 Introduction 1

2 Installation 3

3 Haplotype Data 3

4 Inversion search 4

5 Final remarks 9

Abstract

This vignette shows the main functionalities of the inveRsion

package. A small data set is used to illustrate the main steps for
the detection of inversions with haplotype (phased) data. The pack-
age also handles genotype data, but as it is more computationally
demanding, such analysis is presented in a complementary manual
distributed with the software. Please refer to this for more details.

1 Introduction

Inversions of DNA segments are a source of genetic variability within the
general population. While their frequency and phenotypic expression is not
well understood, SNP-arrays offer a good opportunity to assess the presence
of genetic inversions. As the availability of such arrays spread and phenotypic
information is collected for a wide range of diseases, the ability to detect

1

inversions from nucleotide variations allows the assessment of their impact
on human genetic variability.

Here, we present inveRsion, a bioinformatics tool that enables the detec-
tion of genetic inversions from SNP-array data. Previous methodologies have
been developed for the detection of inversions from haplotype (phased) data.
However, to our knowledge, there is no tool yet available to detect inversions
from such data, and no methodology for genotype data. inveRsion allows
both type of data to be analyzed. It is an optimized implementation of a
previously published method for phased data, and generalizes it to genotype
data.

The detection of inversions follows a simple work-flow. In this manual,
we show the analysis of a small haplotype data set to demonstrate the main
features of the package. inveRsion accepts text files with the haplotype
information for each chromosome (row) and of each SNP (columns) labelled
by their spatial coordinates (first row). Phased data from HapMap samples
is easily converted to the required format; see Maual.pdf. For analysis of
genotype data, the subject genotypes should be given at each row encoded
as 0:homozygous, 1:heterozygous and 2:variant heterozygous. Please refer to
the manual for more information on how to treat genotypes encoded in a
SNPmatrix object.

In this work, we refer to a candidate break-point as a pair of contiguous
SNPs. All candidate brake-points are flanked by haplotype blocks of n-SNPs,
as required by the inversion model. The flanking blocks are then encoded for
each candidate break-point. If we treat genotype data, local haplotyping is
performed with haplo.stats to build the blocks. A window, or trial segment,
is a segment of fixed length (window size) delimited by two candidate break-
points. Finally, the inversion sequence is the actual segment on the data set
that is inverted, for some chromosomes in the population, and that we probe
with trial segments.

There are specialized functions to load genotype data onto an R session;
setUpGenoDatSNPmat and setUpGenoDatFile. Both local haplotyping and
block flanking is performed with codeHaplo. In the case of haplotype data,
we can directly pass the file name to codeHaplo. The inversion model can be
fitted to each possible pair of coded break-points. However, we only scan the
whole chromosome with trial segments of fixed widow size (scanInv). From
this scan a summary function listInv determines the full inversion sequence
from overlapping window segments.

2

2 Installation

inveRsion is written on R (www.r-cran.org). The package can be down-
loaded from www.bioconductor.org. Alternatively, enter in the R prompt
the commands

source(" http://bioconductor.org/biocLite.R ")

biocList(inveRsion)

The library is loaded with the command

> library(inveRsion)

3 Haplotype Data

The data analyzed in this document is a reduced version of the simulation
results obtained using invertFregene [1]. The full data set is fully analyzed
elsewhere (manual.pdf), and comprises an inversion between 0.75Mb and
1.25Mb with population frequency of 0.4 (final value: 0.4135) in N=1000
individuals. We have selected a region of interest in (0.6Mb, 0.8Mb) for the
left-break point and (1.1Mb,1.3Mb) for the right-break point. The haplotype
data within these regions is in the file haplotypesROI.dat.

> hap <- system.file("extdata", "haplotypesROI.txt", package = "inveRsion")

The file contains on the first row the coordinates of the SNPs, and on subse-
quent rows the presence (1) or absence (0) of the corresponding variant allele
for each chromosome in the population. Chromosomes in 2 ∗ i and 2 ∗ i− 1
(i=1...N) rows correspond to the i-th individual.

The first step is to load the data on R and to code the haplotypes for
all the candidate break-points. Candidate break-pints are regions limited by
to contiguous SNPs. In the haplotype coding step we first flank each break-
point by blockSize=5 number of SNPs at each side and then encode the
binary sequence as a decimal integer.

> hapCode<-codeHaplo(blockSize=5,file=hap,

+ minAllele=0.3,saveRes=TRUE)

... labeling frequent allele=0, variant allele =1

..

3

Data is filtered such that SNPs for candidate break-points have at least a
minor allele frequency of minAllele (=0.3). The block flanking and coding
is used for fitting the inversion model to any possible segment in the chro-
mosome. The model tells us, for a given pair of break-points (left and right),
which subjects are likely to have the defined segment inverted.

Although the potential number of trial segments is very large (0(n!) -n
number of SNPs), the inversion model still picks up an inversion signal if the
trial segment is contained in the real inversion sequence. As a consequence,
we can search the whole chromosome with trial segments of fixed length
(window size), as probes for detecting the inversion. After such scan, the
inversion sequence has to be reconstructed from all trial segments with high
signal. This procedure massively reduces the search to order 0(n).

Note that, typically, flanking block sizes are much smaller that the trial
segment sizes. However, if SNP density is low, the window size can be lower
than the minimum blocking distance allowed (2 ∗ blockSize). Trial segments
under such conditions are discarded.

4 Inversion search

Inversions are scanned with trial segments of fixed window size (window=0.5).
The inversion model is fitted to each of this segments an their significance
measured by a Bayes information criterion (BIC).

> window<-0.5

> scanRes<-scanInv(hapCode,window=window,saveRes=TRUE)

..

> scanRes

-Showing object of class: scan-

Top 10 brake-points with highest Likelihood ratio:

LeftBP RightBP LogLike Prob BicDiff

1 0.76716-0.76726 1.26722-1.26734 2791.65 0.522 2571.209

2 0.75075-0.75124 1.25132-1.25160 2715.95 0.577 2449.896

3 0.74661-0.74661 1.24666-1.24687 2714.19 0.586 2508.956

4 0.74661-0.74690 1.24666-1.24687 2714.19 0.586 2508.956

5 0.74690-0.74721 1.24760-1.24881 2714.19 0.586 2508.956

6 0.74721-0.74776 1.24760-1.24881 2714.19 0.586 2539.362

4

7 0.74852-0.74890 1.24886-1.24911 2714.19 0.586 2493.753

8 0.74944-0.75066 1.24951-1.24951 2714.19 0.586 2417.739

9 0.75718-0.75772 1.25733-1.25803 2714.19 0.586 2432.942

10 0.75772-0.75789 1.25803-1.25821 2714.19 0.586 2410.138

others:

window: length window (0.5) for searching inversion segments

This is a scan object that can be readily plotted.

> plot(scanRes,which="b",thBic=-Inf)

0.7 0.8 0.9 1.0 1.1 1.2 1.3

50
0

10
00

15
00

20
00

25
00

Segments Tested

B
IC

 D
iff

er
en

ce

It plots the BIC values for each trial segment, and also offers the option to dis-
play the log-likelihood ratio, or frequency of no inversion, setting which=c("l","p"),
respectively. A threshold for segments with high BIC can be set with thBic.

When scanning the whole genome there will be some regions with over-
lapping significant segments. These regions are automatically identified as
regions of interest where the function listInv re-evaluetes the model, at each

5

significant segment, to reconstruct the whole inverted sequence and extract
the classification of inversion status of each chromosome.

For this data, there is only one overlapping region (BIC > 0) on which
the model is re-run

> invList<-listInv(scanRes,hapCode=hapCode,geno=FALSE,all=FALSE,thBic=0)

..

> invList

-Showing object of class: inversionList-

LBPmin LBPmax RBPmin RBPmax MaxBic invFreq ModelNum

1 0.707386 0.795269 1.207698 1.295863 3270.649 0.5865 60

the output is the reconstructed inverted sequence with basic information for
the inversion event, within the ROIs identified using the specified BIC thresh-
old thBic=0. The result print contains the intervals for the left and right
break-points, the maximum BIC found and the inversion frequency in the
population. With the option all = FALSE, the sequence is reconstructed
from the window segments used in the scan step. Otherwise, listInv fits
the model for all the possible segments within the region of interest. Each
segment used in the reconstruction returns a responsibility for each chromo-
some, stored but not visible in result print. An average of the responsibilities
across segments gives the average responsibility per chromosome, where those
> 0.5 are considered as inverted. Average responsibilities are retrieved from
invList using

> r<-getClassif(invList,thBic=0, wROI=1,bin=FALSE,geno=FALSE)

> r[1:10]

sub1 sub1 sub2 sub2 sub3 sub3 sub4 sub4

0.7441033 0.3690603 0.7422359 0.3756867 0.3579009 0.6733254 0.3576797 0.6932820

sub5 sub5

0.3690603 0.3246950

bin = TRUE returns a binary classification (ri > 0.5) for each chromosome
i (bin=TRUE), conserving the same ordering as the input data. The plot of
invList gives the histogram of the average responsibilities per subject r, for
a given ROI (wROI=1).

> plot(invList,wROI=1)

6

Histogram of subject responsibilities for ROI:
0.707−1.296

average responsibilities of subjects across models

F
re

qu
en

cy

0.3 0.4 0.5 0.6 0.7 0.8

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

The chromosomes in the histogram with r > 0.5 are considered to carry
the inversion.

Those responsibilities can also be used to compute the probabilities that
each subject is homozygote, heterozygote or variant inverted heterozygote

> r<-getClassif(invList,thBic=0, wROI=1,geno=TRUE)

> r[1:10,]

id hom het homInv

1 sub1 0 1 0

2 sub2 0 1 0

3 sub3 0 1 0

4 sub4 0 1 0

5 sub5 1 0 0

6 sub6 0 1 0

7 sub7 1 0 0

8 sub8 0 1 0

9 sub9 0 1 0

10 sub10 0 1 0

7

In the case of knowing the inversion status of each chromosome, you can
assess the accuracy of classification produced with inveRsion. For this sam-
ple data, we have the true inversion status produced by the invertFregene

simulation. Different accuracies can be achieved by varying the BIC thresh-
old

> mem <- system.file("extdata", "mem.txt", package = "inveRsion")

> ac<-accBic(invList,classFile=mem,nsub=1000,npoints=10)

.........

> ac

An object of class "accuracy"

Slot "out":

bicInt prob ac

[1,] 0.0000 0.4135 1.0000

[2,] 363.4055 0.4135 1.0000

[3,] 726.8109 0.4135 1.0000

[4,] 1090.2164 0.4135 1.0000

[5,] 1453.6218 0.4135 1.0000

[6,] 1817.0273 0.4135 1.0000

[7,] 2180.4327 0.4135 1.0000

[8,] 2543.8382 0.5055 0.0820

[9,] 2907.2437 0.4080 0.2865

Note that getClassif depends on the BIC threshold, so the classification
can be bettered by choosing an optimal thBic resulting from the previous
result.

> r<-getClassif(invList,thBic=2000, wROI=1,geno=TRUE)

> r[1:10,]

id hom het homInv

1 sub1 0 1 0

2 sub2 0 1 0

3 sub3 0 1 0

4 sub4 0 1 0

5 sub5 1 0 0

6 sub6 0 1 0

7 sub7 1 0 0

8 sub8 0 1 0

9 sub9 0 1 0

10 sub10 0 1 0

8

5 Final remarks

This guide only covers the analysis of haplotype data. The analysis of geno-
types follows the same streamline, although internally they perform different
processes. Such analysis is performed with the same functions here presented
(scanInv and listInv), but called with the option (geno=TRUE). The read-
ing of different formats and how analyze genotype data is explained in the
manual; displayed by typing manual().

References

[1] O’Reilly PF, Coin LJM and Hoggart CJ, invertFREGENE: software for
simulating inversions in population genetic data, Bioinformatics (2010)
26 (6): 838-840

[2] Sindi SS, Raphael BJ , Identification and frequency estimation of
inversion polymorphisms from haplotype data, J Comput Biol. 2010
Mar;17(3):517-31

[3] Caceres A, Sindi SS, Raphael BJ, Caceres M, Gonzalez JR, Identification
of inversion polymorphisms from genotypes, manuscript in preparation.

9

