
The IdMappingAnalysis package in Bioconductor: Critically comparing

identifier maps retrieved from bioinformatics annotation resources

Alex Lisovich �, Roger S. Day ��

October 14, 2013

�Department of Biomedical Informatics, �� Department of Biostatistics, University of Pittsburgh

1 Introduction

With increasing frequency, studies of biological samples include processing on two (or more) high-throughput platforms.
Each platform produces a large set of features, each labeled by an identifier. It is one thing to merge the data by sample,
simply combining the features on both platforms into a single data set. However, exploiting the full biological significance
of the data depends on linking a feature from one platform with a feature on the other, where the pair of features are
believed to be closely causally related to one another biologically. Examples include an ID from an mRNA expression
array and an ID from a proteome-wide mass spectrometry data set, when the mRNA species is believed to produce the
corresponding protein when translated. Many bioinformatics resources facilitate this mapping between two types of ID.
But they tend to disagree with each other, sometimes dramatically.

The IdMappingAnalysis package helps an analyst to critically compare the identifier maps retrieved from various
annotation resources, to help choose the best ID mapping resource to use in merging the data. One can also use this
technique to choose the best ID filtering strategy for removing dubious ID’s.

As presented here, this methodology focuses on comparing several ID mapping resources, but it is actually quite
general. One can also use it to optimize the selection of a threshold for some quality index for mappings or for individual
features, or to compare other data preparation and preprocessing methods.

This document begins with an overview of the setting and capabilities, followed by detailed examples and explanations,
and finishing with a few notes about the package architecture.

2 Overview of capabilities

2.1 The setting and the problem statement

Suppose we have two data frames containing high-throughput data on the same set of samples. The two data frames are
from two different platforms, designed to quantitate different but related types of molecular features. The two sets of
feature names are identifiers, or IDs, which may be platform-specific, such as a probe set ID on an expression array, or
may correspond to a standard identifier set, such as gene name, UniProt ID, or microRNA identifier or accession.

In light of widespread annotation errors in bioinformatics resources, our problem is to evaluate different data processing
options, either for mapping between the two ID lists (ID mapping, IDM) or for selecting IDs more likely to be correctly
annotated (ID filtering, IDF). Our strategy is to use these two data frames merged across both sample and ID, using
different IDM or IDF methods, and compare the methods by comparing the distributions of correlations between mapped
features. (Correlation is just one possible quality indicator; others may be more suitable for some applications.)

The IdMappingAnalysis package characterizes individual ID maps, creates data-free comparisons of two ID maps, and
creates comparative evaluations of two ID maps in light of merged experimental data for a set of samples. In detail, the
three capabilities provided are:

1. Characterizing ID maps. Each ID map is described by the empirical distribution of the number of secondary IDs.
The ID map may be obtained by sending a list of primary IDs from an experimental data set to a bioinformatics

1



resource, to retrieve for each primary ID the list of secondary IDs that according to this resource, correspond to the
primary ID.

Section 3.4 demonstrates this capability.

2. Comparing two ID maps (without data). The next step in understanding the behavior of different mapping
resources is to compare them. Two given mapping resources A and B probed with the same list of primary IDs
will each provide a list of secondary IDs. This data is easily converted into a set of ID pairs for each resource.
Each primary-secondary ID pair is classified as appearing in “A only”, “B only”, or both. Then the counts in these
categories are summarized across all ID pairs appearing in either A or B.

Section 3.5 demonstrates this capability.

3. Evaluating and comparing two ID maps based on integrating experimental results. To obtain an
evaluation of the relative quality of two mapping resources A and B, we require two data sets reporting results from
two different high-throughput platforms 1 and 2 applied to the same samples. The names of the features of platform
1 are primary IDs; the names of the features of platform 2 are secondary IDs. For each ID pair reported by either
A or B, we imagine that the corresponding pair of features falls into one of three categories:

(a) both features are correctly identified and mapped between platforms, and truly biologically coupled (for example,
correlated) as expected,

(b) both features are correctly identified and mapped, but biologically decoupled or dysregulated in the sample
group under study, due to causes unaccounted-for up to now,

(c) one or both features are incorrectly identified, or incorrectly mapped to each other.

Comparing two strategies A and B for ID mapping, the best of the two should be enriched for the first and second
categories of feature pairs, relative to the third. With enough samples and feature pairs, the identity of the best
strategy should become clear. The main technique used is mixture modeling followed by regression modeling.

Once a preferring strategy for ID mapping is selected, the same strategy also serves to comparatively evaluate two
different criteria or algorithms for filtering features on one of the platforms.

Section 3.6 demonstrates this capability.

3 Examples in detail

The examples in this section recapitulate the creation of tables and figures in an article [4] comparing ID mapping resources
for semantically merging mass spectrometry shotgun proteomics data with expression microarray data. The results are
not identical, primarily because the data analyzed here constitute a subset of the full data set, for purposes of storage and
speed.

3.1 Package setup

We begin loading the package.

> library(IdMappingAnalysis);

This also loads rChoiceDialogs, needed for some interactive features.

3.2 Collecting the ID mapping data

The starting point of the analysis is a vector of bioinformatics identifiers, the primary IDs. This list may be the list of
features for a particular high-througut platform, such as the probe sets on a specific expression array. Alternatively, the
primary IDs may come from a specific experiment, for example a mass spectrometry ”shotgun” experiment, where protein
UniProt accession identifiers are delivered by a specific algorithm matching a peptide spectrum to a peptide and thence
to a protein.

2



With a list of primary IDs in hand, the task is to map these to a set of secondary IDs, and the problem statement
is to select the best bioinformatics mapping resource to use for this task. For each primary ID, each resource is queried
for secondary ID matches. The results from each service are assembled into an IdMap object. The IdMap objects for the
services are then assembled into a single JointIdMap object.

In the following example, the mapping services of interest are accessible using the IdMappingRetrieval Bioconductor
package [5]. Alternatively, one can use the ID map constructor for any mapping services not handled by IdMappingRe-
trieval . (OSX users should install IdMappingRetrieval via the command
biocLite("IdMappingRetrieval", type="source")

because of Java version issues.)
Depending on the mapping service, the process of retrieving a mapping may take significant time and disk space. To

make this overview document practical to assemble in packaging and to use as a tutorial, the subsequent code snippets
use subsets of the maps pre-acquired using the code listed above and placed into the IdMappingAnalysis package data
section.

> options(width = 110)

> # Initialize the ID mapping retrieval system

> library(IdMappingRetrieval);

> Annotation$init();

> AnnotationAffx$setCredentials(user=MY_AFFY_USERNAME,

+ password=MY_AFFY_PASSWORD,verbose=FALSE);

> # Create a service manage object encapsulating default ID retrieval services.

> svm <- ServiceManager(ServiceManager$getDefaultServices());

> # Retrieve the ID Map list for selected array type and services.

> identDfList <- getIdMapList(svm,arrayType="HG-U133_Plus_2",

+ selection=names(svm$getServices()),verbose=TRUE);

> class(identDfList)

> class(identDfList)[[1]]

In this example, however, we use the data provided with the package.
Notice that identDfList is an ordinary list, but each member of identDfList is an object of class IdMap. The first

column of an IdMap data object is the primary ID. There is also a secondary ID column containing the retrieved matches
for each primary ID value, pasted into a single string with collapse="," as the separator.

3.3 Preparing a JointIdMap object from multiple ID maps

> # A list of ID maps to be analysed.

> names(examples$identDfList)

[1] "NetAffx_F" "NetAffx_Q" "DAVID_Q" "DAVID_F" "EnSembl_F" "EnVision_Q"

> head(examples$identDfList[[1]], 5)

Uniprot Affy

Q96RW7 Q96RW7 235944_at

Q8WUU4 Q8WUU4 238607_at

Q86VP3 Q86VP3 1555823_at,1555824_a_at,212778_at,34406_at

Q93075 Q93075 1565580_s_at,203648_at

Q16539 Q16539 202530_at,210449_x_at,211087_x_at,211561_x_at

> # Define the primary and secondary IDs to work with.

> primaryIDs <- IdMapBase$primaryIDs(examples$msmsExperimentSet)

> head(primaryIDs) ### UniProt IDs for proteins.

[1] "P04264" "P13645" "P35908" "P08729" "P08727" "P25705"

3



> secondaryIDs <- IdMapBase$primaryIDs(examples$mrnaExperimentSet);

> head(secondaryIDs) ### Affymetrix probeset IDs.

[1] "208930_s_at" "231060_at" "212937_s_at" "200656_s_at" "229743_at" "200968_s_at"

> # Construct a JointIdMap object which combines

> # the various ID maps, aligned by the union of the primary ID vectors.

> jointIdMap <- JointIdMap(examples$identDfList,primaryIDs,verbose=FALSE);

> names(getMethods.Class(JointIdMap)[["JointIdMap"]]) ### Methods specific to JointIDMap

[1] "as.data.frame" "diffCounts.plot" "ecdf.plot" "getCounts" "getDiff"

[6] "getIdMapList" "getMapNames" "getMatchInfo" "getUnionIdMap"

> str(jointIdMap$as.data.frame()) ## Structure of the data field of JointIdMap

'data.frame': 2395 obs. of 7 variables:

$ Uniprot : chr "P04264" "P13645" "P35908" "P08729" ...

$ NetAffx_F : chr "205900_at" "207023_x_at,210633_x_at,213287_s_at" "207908_at" "209016_s_at,214031_s_at" ...

$ NetAffx_Q : chr "205900_at" "207023_x_at,213287_s_at,210633_x_at" "207908_at" "209016_s_at,214031_s_at" ...

$ DAVID_Q : chr "205900_at" "213287_s_at,210633_x_at,207023_x_at" "207908_at" "1558394_s_at,209016_s_at,1558393_at,214031_s_at" ...

$ DAVID_F : chr "205900_at" "210633_x_at,213287_s_at,207023_x_at" "207908_at" "1558393_at,209016_s_at,1558394_s_at,214031_s_at" ...

$ EnSembl_F : chr "205900_at" "213287_s_at,210633_x_at,207023_x_at" "207908_at" "209016_s_at" ...

$ EnVision_Q: chr "205900_at" "207023_x_at,210633_x_at,213287_s_at" "207908_at" "209016_s_at" ...

- attr(*, "name")= chr ""

- attr(*, "secondaryKey")= chr "Affy"

Note that the first column of the JointIdMap data object is the primary ID. The other columns are the retrieved
matches (pasted with “,”, as with IdMap), for each of the ID mapping resources.

We can also reverse the mapping, as follows.

> identDfListReversed <- lapply(examples$identDfList, function(identDf)

+ IdMap$swapKeys(IdMap(identDf)))

> jointIdMapReversed <- JointIdMap(identDfListReversed, secondaryIDs, verbose=FALSE)

(Reversing the mapping is not necessarily its own inverse; an ID with no matches will disappear in the reverse of the
reverse.)

3.4 Individual characterization of ID maps.

The following code creates the analogues of Table 1 and Figure 1 in [4].

> # Assemble secondary ID counts object for a given set of DB's

> mapCounts <- getCounts(jointIdMap,

+ idMapNames=c("NetAffx_Q","NetAffx_F","DAVID_Q","DAVID_F","EnVision_Q"),

+ verbose=FALSE);

> # This shows the structure of the contents of an IdMapCounts object.

> str(mapCounts$as.data.frame())

'data.frame': 2395 obs. of 6 variables:

$ Uniprot : Factor w/ 2395 levels "A0A580","A0AUH1",..: 266 363 515 319 318 438 284 931 864 372 ...

$ NetAffx_Q : int 1 3 1 2 2 2 1 2 1 4 ...

$ NetAffx_F : int 1 3 1 2 2 2 1 2 1 4 ...

$ DAVID_Q : int 1 3 1 4 1 2 1 2 1 5 ...

$ DAVID_F : int 1 3 1 4 2 3 1 2 2 5 ...

$ EnVision_Q: int 1 3 1 1 1 1 1 2 1 3 ...

- attr(*, "name")= chr ""

4



> names(getMethods.Class(mapCounts)[["IdMapCounts"]])

[1] "getStats" "plot"

> # Tabulating the number of returned secondary IDs per primary ID, aligned across services.

> statsByMatchCount <- mapCounts$getStats(summary=FALSE,verbose=FALSE);

> statsByMatchCount[1:6,1:10];

cnts NetAffx_Q NetAffx_Q (%) NetAffx_F NetAffx_F (%) DAVID_Q DAVID_Q (%) DAVID_F DAVID_F (%) EnVision_Q

0 0 374 15.6 374 15.6 332 13.9 269 11.2 539

1 1 730 30.5 730 30.5 629 26.3 626 26.1 923

2 2 559 23.3 559 23.3 526 22.0 515 21.5 554

3 3 349 14.6 349 14.6 350 14.6 366 15.3 239

4 4 187 7.8 187 7.8 244 10.2 254 10.6 85

5 5 90 3.8 90 3.8 112 4.7 141 5.9 36

> # ...and the same results with a simplified summary.

> mapCounts$getStats(summary=TRUE,cutoff=3,verbose=FALSE);

0 1 2 3 >3 Max.count Total.count

NetAffx_Q 15.6 30.5 23.3 14.6 16.0 41 5005

NetAffx_F 15.6 30.5 23.3 14.6 16.0 41 5005

DAVID_Q 13.9 26.3 22.0 14.6 23.2 34 5855

DAVID_F 11.2 26.1 21.5 15.3 25.9 23 6167

EnVision_Q 22.5 38.5 23.1 10.0 5.9 11 3394

> # A plot of empirical cdf's of the secondary ID counts

> par(mfrow = c(1, 2));

> mapCounts$plot(); ### Or alternatice syntax: plot(mapCounts)

Complementary ECDF

# of ' Affy ' matching '  Uniprot '

pr
op

or
tio

n 
(c

om
pl

em
en

t o
f c

um
ul

at
iv

e)

0 10 20 30 40

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

NetAffx_Q
NetAffx_F
DAVID_Q
DAVID_F
EnVision_Q

● NetAffx_Q
NetAffx_F
DAVID_Q
DAVID_F
EnVision_Q

3.5 Comparison of two ID maps

Now we compare two ID maps for each primary ID, then display the results across primary IDs with tabular and graphical
summaries. The following code creates the analogues of Figures 2-5 in [4].

> diffsBetweenMap <- jointIdMap$getDiff("DAVID_Q","EnVision_Q",verbose=FALSE);

> class(diffsBetweenMap)

5



[1] "IdMapDiff" "IdMapBase" "Object"

> diffCounts <- IdMapDiffCounts(diffsBetweenMap,verbose=FALSE);

> names(getMethods(IdMapDiffCounts)[["IdMapDiffCounts"]])

[1] "getCompoundEvents" "getCompoundGroups" "plot" "summary"

> ### We characterize the differences betwen the two ID maps.

> diffCounts$summary(verbose);

counts

excess.both 39

excess.left 856

excess.right 25

same.list 902

in.left.only 241

in.right.only 34

in.neither 298

> par(mfrow = c(1, 2));

> diffCounts$plot(adj=0.1,sides=1);

> # The same result is achieved more succinctly (for a different pair of ID mapping resources in this example) in this way:

> # summary(jointIdMap$diffCounts.plot(c("DAVID_Q", "EnVision_Q"),

> # adj=0.1,sides=1,verbose=FALSE));

> # We can also characterize the reverse mapping created above.

> summary(jointIdMapReversed$diffCounts.plot(c("DAVID_Q", "EnVision_Q"),

+ adj=0.1,sides=1,verbose=FALSE));

counts

excess.both 6

excess.left 18

excess.right 16

same.list 849

in.left.only 554

in.right.only 21

in.neither 356

Comparisons of IDs retrieved

# of Affy matches found

U
ni

pr
ot

−20 −10 0 10 20

DAVID_Q                     EnVision_Q

in neither
298 (12.4%)

in right only
34 (1.4%)

in left only
241 (10.1%)

same list
902 (37.7%)

excess right
25 (1%)

excess left
856 (35.7%)

excess both
39 (1.6%)

total:
2395

Comparisons of IDs retrieved

# of Uniprot matches found

A
ffy

−20 −10 0 10 20

DAVID_Q                     EnVision_Q

in neither
356 (19.6%)

in right only
21 (1.2%)

in left only
554 (30.4%)

same list
849 (46.6%)

excess right
16 (0.9%)

excess left
18 (1%)

excess both
6 (0.3%)

total:
1820

Interactive use is available through a wrapper menu, invoked by the arg ”loop”.

> jointIdMap$diffCounts.plot("loop",adj=0.1,sides=1,verbose=FALSE);

6



3.6 Performing a comparative evaluation of two ID maps based on integrating experi-
mental results from two platforms.

In this section, we utilize data from the two experiments to create and compare evaluations of several ID mapping resources,
as manifest in the semantically integrated data. By “semantic integration” we mean the process of selecting, for each ID
pair obtained from any of the ID maps, the two corresponding features in the two experiments, and merging them by
sample. It is semantic in the sense that the ID maps are intended to represent true biological relations.

3.6.1 Preparing a data set for each ID pair

In this example, the data-based comparison of ID maps uses a mass spectrometry experiment and an Affymetrix microarray
experiment on the same samples. In the interest of reducing package storage, a subset of features is selected. In the interest
of anonymity, data are jittered. The primary IDs are the protein UniProt IDs from the mass spectrometry experiment.
The MS/MS data is first filtered. We keep columns for which the average of counts across all samples is greater than 0.5.
We keep rows for which all the data are not missing. The secondary IDs

> msmsExperimentSet <- DataFilter$do.apply(examples$msmsExperimentSet,

+ byRows=TRUE,filterFun=DataFilter$minAvgCountConstraint,filtParams=0.52,verbose=FALSE);

> dim(examples$msmsExperimentSet)

[1] 2395 99

> dim(msmsExperimentSet)

[1] 2395 99

> msmsExperimentSet <- DataFilter$removeNASeries(msmsExperimentSet,byRows=TRUE,verbose=FALSE);

> dim(msmsExperimentSet)

[1] 469 99

> mrnaExperimentSet <- examples$mrnaExperimentSet

> # We log10-transform the mRNA signal data.

> mrnaExperimentSet[,-1] <- log10(mrnaExperimentSet[,-1]);

> # The primary IDs are now defined by the experiment.

> primaryIDs_from_dataset <- IdMapBase$primaryIDs(msmsExperimentSet);

> secondaryIDs <- IdMapBase$primaryIDs(mrnaExperimentSet);

> # The method name primaryIDs() is unfortunate! This will be changed.

>

> # Create a JointIdMap object as before,

> # but with a primary ID vector reduced by the filtering step above.

> jointIdMap_from_dataset <- JointIdMap(examples$identDfList, primaryIDs_from_dataset, verbose=FALSE);

3.6.2 Creating a merged data set for each ID pair

Next we create an object of class UniquePairs containing a data frame of all ID pairs from all the ID maps being analyzed.
For each ID pair, we want to calculate the correlation of the corresponding features from the two experimental data sets.
Therefore we prepare a CorrData object which collates the data to facilitate rapidly calculating all the correlations in one
step.

> uniquePairs <- as.UniquePairs(

+ getUnionIdMap(jointIdMap_from_dataset,verbose=FALSE),secondaryIDs);

> str(uniquePairs$as.data.frame())

'data.frame': 1541 obs. of 2 variables:

$ Uniprot: chr "P04264" "P13645" "P13645" "P13645" ...

$ Affy : chr "205900_at" "207023_x_at" "210633_x_at" "213287_s_at" ...

- attr(*, "name")= chr "NetAffx_F"

7



> corrData <- CorrData(uniquePairs,

+ examples$msmsExperimentSet,examples$mrnaExperimentSet,verbose=FALSE);

> str(corrData)

Classes 'CorrData', 'Object' atomic [1:1] NA

..- attr(*, ".env")=<environment: 0x7067700>

> names(getMethods(CorrData)[["CorrData"]])

[1] "as.MultiSet" "getExperimentSet" "getSampleNames" "getUniquePairs" "interactive.plot"

[6] "pack.experiments" "plot" "primaryKey" "secondaryKey"

> # (The method as.MultiSet() is deprecated.)

Next, we create an object of class JointUniquePairs that records, for each unique pair, which of the ID maps reported
it. This will be used later for regression analyses to determine which ID maps best predict good correlations. It is also
handy for subselecting secondary ID features.

> # create pairs match object from unique pairs and joint ID map object

> jointUniquePairs <- JointUniquePairs(uniquePairs,

+ getIdMapList(jointIdMap_from_dataset,verbose=FALSE),verbose=FALSE);

> str(jointUniquePairs$as.data.frame())

'data.frame': 1541 obs. of 8 variables:

$ Uniprot : chr "P04264" "P13645" "P13645" "P13645" ...

$ Affy : chr "205900_at" "207023_x_at" "210633_x_at" "213287_s_at" ...

$ NetAffx_F : logi TRUE TRUE TRUE TRUE TRUE TRUE ...

$ NetAffx_Q : logi TRUE TRUE TRUE TRUE TRUE TRUE ...

$ DAVID_Q : logi TRUE TRUE TRUE TRUE TRUE TRUE ...

$ DAVID_F : logi TRUE TRUE TRUE TRUE TRUE TRUE ...

$ EnSembl_F : logi TRUE TRUE TRUE TRUE TRUE TRUE ...

$ EnVision_Q: logi TRUE TRUE TRUE TRUE TRUE TRUE ...

- attr(*, "name")= chr ""

3.6.3 Scatterplots for data corresponding to a selected ID pair

For a particular primary ID, in this example P07355, we want to view correlations and scatterplots for this feature together
with the features on the other experiment corresponding to mapped secondary IDs: in this example, the probeset IDs
which are reported in one or more ID pairs to correspond to P07355. The following code creates the analogues of Figures
6 and 7 in [4].

> # cross-correlation matrix of the expression signals for probesets mapped with UniprotAcc="P07355"

>

> idMatchInfo <- jointIdMap_from_dataset$

+ getMatchInfo(IDs="P07355",

+ idMapNames=c("NetAffx_Q", "DAVID_Q", "EnVision_Q"))[[1]]

> print(idMatchInfo)

201590_x_at 210427_x_at 213503_x_at 1568126_at 210876_at 211241_at

NetAffx_Q 201590_x_at 210427_x_at 213503_x_at 1568126_at

DAVID_Q 201590_x_at 210427_x_at 213503_x_at 1568126_at 210876_at 211241_at

EnVision_Q 201590_x_at 210427_x_at 213503_x_at

> data_Uniprot = corrData$getExperimentSet(modality="Uniprot",

+ IDs="P07355")

> data_Affy <- corrData$getExperimentSet(modality="Affy",

+ IDs=colnames(idMatchInfo));

> data <- cbind(t(data_Uniprot[,-1]), t(data_Affy[,-1]))

> cor(data,method="spearman");

8



P07355 201590_x_at 210427_x_at 213503_x_at 1568126_at 210876_at 211241_at

P07355 1.0000000 0.53381294 0.5027493 0.5332040 0.20676100 0.31792059 0.27333674

201590_x_at 0.5338129 1.00000000 0.9780171 0.9804143 0.07808794 0.14324697 0.42917210

210427_x_at 0.5027493 0.97801707 1.0000000 0.9758239 0.10087607 0.11997603 0.40942693

213503_x_at 0.5332040 0.98041428 0.9758239 1.0000000 0.10774312 0.16306870 0.42916572

1568126_at 0.2067610 0.07808794 0.1008761 0.1077431 1.00000000 -0.07625211 0.04957742

210876_at 0.3179206 0.14324697 0.1199760 0.1630687 -0.07625211 1.00000000 0.19408024

211241_at 0.2733367 0.42917210 0.4094269 0.4291657 0.04957742 0.19408024 1.00000000

> # Scatterplot for Uniprot="P07355" (annexin 2), probe set ID="1568126_at".

> # Patient outcomes guide symbols and colors.

> par(mfrow = c(1, 2));

> corrData$plot(input=list(c("P07355","1568126_at")),

+ outcomePairs=examples$outcomeMap,proteinNames="ANXA2",

+ cex=1.2,cex.main=1.2,cex.lab=1.2,cols=c("green","red","darkblue"));

> # scatterplot with outcome for Uniprot="P07384" (annexin 2)

> # for all matching probesets without outcome

> corrData$plot(input="P07384",proteinNames="ANXA2",

+ cex=1.2,cex.main=1.2,cex.lab=1.2,cols=c("green","red","darkblue"));

0 5 10 15 20

0
20

40
60

80
10

0
12

0

E

E

E
E

E EE

E

E

E E

E

E E

E

E
E E

E

E

E

E

E

E E

EE

E

E

E

E E

E

E

E

E
EE

E

E
E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E EE
E

E

E

E
E

EE

E

E

E

E

E

E E

E EEE

E

E

E

S
S

SS S

S

S

S

S

SS

S

N
N N

NN

N

N

ANXA2
P07355 − 1568126_at

correlation(spearman)= 0.207

protein count

m
R

N
A

 e
xp

re
ss

io
n 

(lo
g1

0)

0 5 10 15 20 25

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

1

1

1
1

1 1
1

111
1

1

1
1

1 1
1

1 1

1

1

1

11

1

1

1

1 1 11
1

1

11

1

1

1

1 1

11 1

1

1

1

1
1

1
1

11
11 1

1

1

1

1 1
1
1

1

1

1

1

1

1

1

1

1

1

1
1

1 1

1

1 1
1

1

1
1

1

1

1
1

1
1 1

1
1

11 1
1

1
1

2
2

2
22

2

2
2

2

22 22

22

2

2

2 2

2

2
2

2

2

2

2

2
2

2

2

22

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

22

2
2

2

2
2

2

2

2

22
2

2

2

2

2

2

2

2
2

2

2

2

2

2

22

2

2

2

2
2

2

2

2

22

2

22

2

2

2

2 2

2

2

ANXA2
P07384 − 200752_s_at, P07384 − 232012_at

correlation(spearman)= 0.088

protein count

m
R

N
A

 e
xp

re
ss

io
n 

(lo
g1

0)

3.7 Exploring merged data interactively using the high level wrappers

There are also interactive menu-driven versions.

> # interactive scatterplot with a single primary ID (uniprot) and outcomes

> corrData$interactive.plot(c("P07355"),

+ outcomePairs=examples$outcomeMap,proteinNames="ANXA2");

> # interactive scatterplot with a single primary ID (uniprot) and without outcomes

> corrData$interactive.plot(c("P07355"),proteinNames="ANXA2");

> # interactive scatterplot with multiple probeset IDs (uniprot) and without outcomes

> corrData$interactive.plot(c("P07355","P07384","P09382"));

> # interactive scatterplot with all available probeset

> #IDs (uniprot) and without outcomes

> corrData$interactive.plot();

9



3.8 Evaluating and comparing Id Map quality using correlations

We can calculate correlations for all the ID pairs, and use them as ”model quality” measures, for the model in which
protein abundance should be proportional to transcript abundance. There are many things to criticize about this model,
but by looking across a large set of ID pairs, the correlations can provide insight as to which of the ID mapping methods
is working the best.

3.8.1 Calculating and displaying the correlations

The following code creates the analogues of Figures 8-10 in [4]. The density fit for correlations is for the union of all ID
maps from all the ID mapping resources under study. Each unique ID pair counts just once regardless of the number
of ID maps that contain it. The left-most graph shows a fairly tendency towards positive correlations. Its appearance
is consistent with a mixture of a substantial proportion of “noise” correlations with a substantial proportion of “real”
correlations. The next two graphs show more detail. The middle graph overlays individual correlation densities for each
ID mapping resource. It shows all the curves, while the right-hand graph overlays individually chosen correlation densities
for each ID mapping resource.

> par(mfrow = c(1, 3));

> corr <- Corr(corrData,method="pearson",verbose=FALSE);

> corr[1:6, ]

Uniprot Affy pearson

1 P04264 205900_at -0.03646315

2 P13645 207023_x_at -0.05323715

3 P13645 210633_x_at -0.09455382

4 P13645 213287_s_at -0.05994931

5 P35908 207908_at -0.10343738

6 P08729 209016_s_at 0.70042064

> ## Left-hand plot: density estimate for all correlations.

> corr$plot(cex=1.2,cex.main=1.4,cex.lab=1.2,cex.legend=1.2);

> ## Center plot: individual density estimates for selected Id mapping resources.

> corrSet <- getCorr(jointUniquePairs,corr,

+ groups=c("union","EnVision_Q","NetAffx_Q","DAVID_Q","DAVID_F"),

+ full.group=TRUE,verbose=FALSE);

> names(corrSet)

[1] "union" "EnVision_Q" "NetAffx_Q" "DAVID_Q" "DAVID_F"

> Corr$plot(corrSet,cex=1.2,cex.main=1.4,cex.lab=1.2,cex.legend=1.2);

> ## Right-hand plot: individual density estimates for selected Id mapping resources.

> corrSet <- jointUniquePairs$corr.plot(corr,

+ idMapNames=c("NetAffx_Q","DAVID_Q","EnVision_Q"),

+ plot.Union=FALSE, subsetting=TRUE, verbose=FALSE,

+ cex=1.2, cex.main=1.4 ,cex.lab=1.2, cex.legend=1.2);

> names(corrSet)

[1] "NetAffx_Q" "DAVID_Q" "EnVision_Q"

10



nonparametric density fit

correlation (pearson)

de
ns

ity

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

nonparametric density fit

correlation (pearson)

de
ns

ity

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

union
EnVision_Q
NetAffx_Q
DAVID_Q
DAVID_F

nonparametric density fit

correlation (pearson)

de
ns

ity

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

NetAffx_Q
DAVID_Q
EnVision_Q

To construct a correlation density plot interactively, the following method call provides an alternative.

> jointUniquePairs$interactive.corr.plot(corr,verbose=FALSE);

3.8.2 Alternative endpoint: posterior probability of a ”good” correlation base on a mixture model

The density smooths suggest a mixture model, with a component cntered at correlation=zero and another located in the
positive range of correlations. We fit a mixture model using the package mclust. This generates a posterior probability for
each component (assuming a 50-50 prior for component membership). The posterior probability of the positive component
is arguably a better measure than the correlation itself for purposes of identifying factors that predict a correct ID mapping.
Only large really correlations matter, and the difference between a negative correlation and a zero correlation is nil. While
the transformation from correlation to the posterior probability is approximately monotone (as currently calculated), it
stretches the important part of the correlation scale and compresses the unimportant part.

There are shortcomings to be addressed. Currently the model is fit without assuming equal variances; consequently,
if the fitted variances are much different, then the transformation to posterior probability is not monotone. So far no
problems appear to have arisen in practice because of this. It is easily addressed by requiring equal variances for the two
mixture components, but this is not yet implemented in this package. Second, by rights the zero-centered component
should be centered exactly at zero. The option to fix one of the means is not readily available through mclust . Again, so
far in practice the left-most component has always had its mean very close to zero, making it a plausible representation
for correlations due to noise.

> # create and plot the mixture model for number of components = 2

> mixture <- Mixture(corr,G=2,verbose=FALSE);

> par(mfrow=c(1, 2));

> mixture$plot();

> mixture$getStats();

comp.1 comp.2

mean 0.0203648 0.2753780

sd 0.1128015 0.2100035

weight 0.5880664 0.4119336

range.low -0.2747537 -0.3598423

range.high 0.1853254 0.8801130

11



−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

mixture density fit

correlation

de
ns

ity

mixture fit
empirical fit
component 1
component 2

There are a few options. One can vary the number of components in the mixture, and one can restrict to a subset of
the ID mappers (the groups parameter).

> # Create and plot the mixture model determining

> #the optimal number of components)

> # for a given DB subset treating the subset as a full group

> mixture.subset <- jointUniquePairs$getMixture(corr, groups=c("NetAffx_Q","DAVID_Q","EnVision_Q"),

+ full.group=TRUE,G=c(1:5),verbose);

> mixture.subset <- jointUniquePairs$mixture.plot(corr,

+ idMapNames=c("NetAffx_Q","DAVID_Q","EnVision_Q"),

+ subsetting=TRUE,G=c(1:5),verbose=FALSE);

The mean of component #1 is close to zero. The standard deviations of the components are somewhat different. In
principle, then, a correlation near -1 could be classified as component #2; but so far this does not happen in practice.

> # retrieve the mixture parameters

> mixture$getStats();

comp.1 comp.2

mean 0.0203648 0.2753780

sd 0.1128015 0.2100035

weight 0.5880664 0.4119336

range.low -0.2747537 -0.3598423

range.high 0.1853254 0.8801130

We can compare the correlation distributions of the subsets of ID pairs defined by which of the mapping services
reports the pair. The analogous boxplot figure using the compenent #2 posterior probability emphasizes the differences
for large positive correlations, and is probably more informative. Note how the individual groups are accessible through
list item names with a Boolean-like syntax.

> par(mfrow = c(1, 2));

> # Choose the mapping services, and define the corresponding short names to use in the figure.

> mappingServicesToPlot <- list("NetAffx_Q"="AffQ","DAVID_Q"="DQ","EnVision_Q"="EnV");

> # Plot correlation probability distributions by match group

> boxplotResult_correlation = jointUniquePairs$corr.boxplot(

+ corr, idMapNames=mappingServicesToPlot, subsetting=TRUE,

+ srt=35, col.points="green");

> # The following extracts the correlations for the group of ID pairs

12



> # reported by DQ and EnV but not by AffQ.

> boxplotResult_correlation$response.grouped$`!AffQ & DQ & EnV`

[1] -0.062215756 0.340786098 0.346203727 -0.095519260 0.282205104 0.006357974 0.038169869 0.739437988

[9] 0.112938352 0.046416742 0.263356579 0.048522628

> # Plot posterior second component probability distributions by match group

> boxplotResult_mixtureProb = jointUniquePairs$mixture.boxplot(

+ corr, idMapNames=mappingServicesToPlot, subsetting=TRUE,

+ plot.G=2, srt=35, col.points="green");

> # invisible by default.

> boxplotResult_mixtureProb$response.grouped$`!AffQ & DQ & EnV`

[1] 0.1321347 0.9609553 0.9655719 0.1308347 0.8694669 0.1594677 0.1869024 1.0000000 0.3111099 0.1960427

[11] 0.8200670 0.1985278

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●●●

●

●

●●
●

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Correlations (pearson) by match group

co
re

lla
tio

n

●

●
●

●
●●
●●
●
●●
●
●
●●● ●
●●●
●

●

●

●

●

●

●
●●●
●●●●●
●●●
●●
●●●●●●●●●● ●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●●
●●● ●●●●●●● ●●●●●● ●● ●●●●●● ●● ●●●●●● ●● ●● ●●●●●● ●●●●●●● ●●●●●●●●●

●●●
●●●●●●
●● ●●●●●

●●
●●●●
●●●●●●
●●●
●●
●

●

●
●
●

●

●

●

●●

●

●●●
●

●

●

●

●

●●
●●●●
●●
●●●●●●●●●●●● ●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●● ●●●●●●● ●● ●● ●●●●● ●●●●●● ●● ●● ●● ●● ●●●●●● ●● ●● ●●●●●● ●● ●● ●●●●●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●●●●● ●●●●●●●●●●●● ●● ●●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●●● ●● ●● ●● ●●●●●● ●● ●● ●● ●●●●● ●● ●● ●●●●● ●●●
●●●●
●●●
●●●
●●
●●●●●●
●●●●
●●●●● ●●●

●
●●
●●
●
●●
●
●●
●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●

●●

●

●

●●●●●
●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●● ●●●●●●
●●●●●● ●●●●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●
●●●
●●●●●

●●●●
●●●●
●
●●●
●●●●
●●●●●●
●●
●●●●
●●●●
●

●

●●
●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●●●

●

●

●●
●

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Correlations (pearson) by match group

co
re

lla
tio

n

24 275 13 261 9 12 853

AffQ DQ
EnV

AffQ
 &  D

Q

AffQ
 &  E

nV

DQ &  E
nV

All A
gree

●

●

●

●

●

●●

●
●
●

●●●●●
●

●

●

●

●
●

●
●

●

●

●●●

●●

0.
2

0.
4

0.
6

0.
8

1.
0

Component posterior probability by match group

P
r(

co
m

po
ne

nt
 #

2)

●●● ●●
●●●●●
●
●
●●● ●

●●
●●

●

●

●

●

●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●
●●●

●●●
●●●
●
●●
●●
●●
●●●
●●
●●
●
●●●
●●●●
●●
●
●

●
●●●
●
●●
●●
●

●●
●
●
●
●●
●

●
●●●

●●
●

●●●

●●
●
●
●●
●●●●
●●●●
●●●
●●●●●●●●●●

●●●

●

●

●
●●

●

●●● ●

●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●● ●● ●● ●●●●●●●●●
●●●●●●
●●●
●●●
●●●●
●●●●●●
●●●●
●
●
●●●●
●●●●●●
●●●●
●●●
●●
●
●
●●●●●
●●●
●
●●●
●●
●●●●●
●●●●
●
●●
●●
●●●
●●
●●

●

●
●●●

●

●●
●

●●

●●
●●●●
●●
●●
●●
●●●●●●●●●
●●●●●●●●●● ●● ●● ●

●●
●
●●

●

●

●●

●●

●

●
●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●
●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●
●●●●●●
●●●●●
●●●●
●●●●●●●●●●●
●●●
●●●●●
●●
●
●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●●●
●●●
●●●●●●●●
●●●●●●
●●
●●
●●●●●●●
●●●●
●●●●●●●
●●●●●
●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●
●●●●●●●
●●●●
●●●
●
●●
●●●
●●●●●
●●
●●●●
●●●●●●●●
●●●
●●●
●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●

●

●

●

●

●●

●
●
●

●●●●●
●

●

●

●

●
●

●
●

●

●

●●●

●●

0.
2

0.
4

0.
6

0.
8

1.
0

Component posterior probability by match group

P
r(

co
m

po
ne

nt
 #

2)

24 275 13 261 9 12 853

AffQ DQ
EnV

AffQ
 &  D

Q

AffQ
 &  E

nV

DQ &  E
nV

All A
gree

Again, there is an interactive menu-driven version.

> # plot the results of mixture fit interactively choosing the DB subset

> interactive.mixture.plot(jointUniquePairs,corr,verbose=FALSE);

3.8.3 Comparisons of mapping services

We can use regression modeling to investigate many different possible predictors of correlation, where correlation is a
model quality measure, thought of as a reflection of the chance that the ID pair is correct. Here, for our quality measure
for the linear model, instead of the correlation between the features, we use the posterior probability of belonging to the
right-hand positive-correlation mixture component.

> # Perform regression analysis relating which mapping services predict good correlations.

>

> fit<-jointUniquePairs$do.glm(corr$getData(),

+ idMapNames=c("DAVID_Q","EnVision_Q","NetAffx_Q"));

> coefficients(summary(fit));

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03590490 0.01698235 2.114248 3.465479e-02

DAVID_QTRUE 0.03399767 0.01890522 1.798322 7.232214e-02

EnVision_QTRUE 0.08022383 0.01286295 6.236812 5.759386e-10

NetAffx_QTRUE 0.01668979 0.01510508 1.104913 2.693703e-01

13



> # Perform regression analysis using the second mixture component as the outcome variable.

> qualityMeasure <- mixture$getData(G=2) ## 2nd component posterior probability

> fitLinear <- jointUniquePairs$do.glm(qualityMeasure,

+ idMapNames=c("DAVID_Q","EnVision_Q","NetAffx_Q"));

> coefficients(summary(fitLinear));

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2420872 0.02745487 8.817641 3.101758e-18

DAVID_QTRUE 0.0707632 0.03056350 2.315284 2.072850e-02

EnVision_QTRUE 0.1417917 0.02079516 6.818495 1.317866e-11

NetAffx_QTRUE 0.0313854 0.02441993 1.285237 1.989031e-01

> #To do this directly:

> fitLinear <- with(as.data.frame(jointUniquePairs),

+ glm(qualityMeasure ~ DAVID_Q + EnVision_Q + NetAffx_Q))

> coefficients(summary(fitLinear));

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2420872 0.02745487 8.817641 3.101758e-18

DAVID_QTRUE 0.0707632 0.03056350 2.315284 2.072850e-02

EnVision_QTRUE 0.1417917 0.02079516 6.818495 1.317866e-11

NetAffx_QTRUE 0.0313854 0.02441993 1.285237 1.989031e-01

> # Another variation:

> fitHitCount <- with(as.data.frame(jointUniquePairs),

+ glm(qualityMeasure ~ I(DAVID_Q + EnVision_Q + NetAffx_Q)))

> coefficients(summary(fitHitCount));

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.21864994 0.020410527 10.71261 7.070439e-26

I(DAVID_Q + EnVision_Q + NetAffx_Q) 0.08646995 0.008391306 10.30471 3.997630e-24

> fitHitCount$dev - fitLinear$dev

[1] 0.8649157

With the caveat that this is a reduced illustrative data set compared to the full data reported in [4], the linear model
seems to indicate that EnVision is the best predictor, DAVID less so, and NetAffx the least, although comparison with
”hit count” model counteracts that impression. Using the 2nd component probability seems somewhat more sensitive than
using the correlations as the endpoint.

The regression analyses above are unweighted analyses. However, the error variance is not constant. We can supply
weights reflecting the variances as estimated either by the Fisher’s formula for the variance of a correlation coefficient
(ignoring the non-normality), or by a bootstrap. The latter are provided by the Bootstrap class within the IdMapping-
Analysis package.

> bootstrap<-Bootstrap(corrData,Fisher=TRUE,verbose=FALSE);

> str(as.data.frame(bootstrap))

'data.frame': 1541 obs. of 5 variables:

$ Uniprot: chr "P04264" "P13645" "P13645" "P13645" ...

$ Affy : chr "205900_at" "207023_x_at" "210633_x_at" "213287_s_at" ...

$ corr : num -0.0365 -0.0532 -0.0946 -0.0599 -0.1034 ...

$ sd : num 0.0749 0.0584 0.058 0.0753 0.0807 ...

$ bias : num -0.006056 -0.000499 0.000707 0.010893 0.000842 ...

- attr(*, "name")= chr ""

14



> # Scatterplot of the estimated standard deviation versus the observed correlation.

> bootstrap$plot(new.plot=TRUE,file.copy=TRUE,copy.zoom=2,bg="white");

> # One can use these estimates as weights.

> fitLinear <- with(as.data.frame(jointUniquePairs),

+ glm(qualityMeasure ~ DAVID_Q + EnVision_Q + NetAffx_Q,

+ weights=(as.data.frame(bootstrap)$sd) ^ (-2))

+ )

> coefficients(summary(fitLinear));

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.23539571 0.02611256 9.0146530 5.719473e-19

DAVID_QTRUE 0.04041857 0.02920410 1.3840033 1.665584e-01

EnVision_QTRUE 0.16457479 0.02016592 8.1610364 6.840405e-16

NetAffx_QTRUE 0.02025670 0.02359836 0.8583942 3.908086e-01

> # Another variation:

> fitHitCount <- with(as.data.frame(jointUniquePairs),

+ glm(qualityMeasure ~ I(DAVID_Q + EnVision_Q + NetAffx_Q),

+ weights=(as.data.frame(bootstrap)$sd) ^ (-2))

+ )

> coefficients(summary(fitHitCount));

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.18998319 0.019651061 9.667834 1.664034e-21

I(DAVID_Q + EnVision_Q + NetAffx_Q) 0.08603494 0.008162265 10.540572 3.940492e-25

> fitHitCount$dev - fitLinear$dev

[1] 216.6827

With this weighting, the evidence in favor of EnVision’s predictive power is much stronger.
To compare two services directly, the following code is illustrative. One can perform two-sample tests on the subgroups

of ID pairs that exclusively are reported by one but not the other service. Performing a Wilcoxon test, it will not usually
matter whether the endpoint is the correlation or Pr(component #2). But a t test should be more powerful in detecting
a difference where it matters: large correlations.

> affyOnly = boxplotResult_mixtureProb$response.grouped$`AffQ & !DQ & !EnV`

> envOnly = boxplotResult_mixtureProb$response.grouped$`!AffQ & !DQ & EnV`

> davidOnly = boxplotResult_mixtureProb$response.grouped$`!AffQ & DQ & !EnV`

> allThree = boxplotResult_mixtureProb$response.grouped$`AffQ & DQ & EnV`

> t.test(affyOnly, envOnly)

Welch Two Sample t-test

data: affyOnly and envOnly

t = -1.5644, df = 16.84, p-value = 0.1363

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.42738763 0.06358784

sample estimates:

mean of x mean of y

0.2727343 0.4546342

> wilcox.test(affyOnly, envOnly)

15



Wilcoxon rank sum test

data: affyOnly and envOnly

W = 108, p-value = 0.1321

alternative hypothesis: true location shift is not equal to 0

> t.test(affyOnly, davidOnly)

Welch Two Sample t-test

data: affyOnly and davidOnly

t = -1.1517, df = 28.912, p-value = 0.2589

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.15956799 0.04461088

sample estimates:

mean of x mean of y

0.2727343 0.3302129

> wilcox.test(affyOnly, envOnly)

Wilcoxon rank sum test

data: affyOnly and envOnly

W = 108, p-value = 0.1321

alternative hypothesis: true location shift is not equal to 0

> t.test(affyOnly, allThree)

Welch Two Sample t-test

data: affyOnly and allThree

t = -4.7475, df = 26.011, p-value = 6.539e-05

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.3305806 -0.1308147

sample estimates:

mean of x mean of y

0.2727343 0.5034320

> wilcox.test(affyOnly, allThree)

Wilcoxon rank sum test with continuity correction

data: affyOnly and allThree

W = 6441, p-value = 0.001933

alternative hypothesis: true location shift is not equal to 0

The last two tests show the increased power from using the 2nd component probability instead of the correlation as
the quality measure.

> head(jointUniquePairs$as.data.frame() )

Uniprot Affy NetAffx_F NetAffx_Q DAVID_Q DAVID_F EnSembl_F EnVision_Q

1 P04264 205900_at TRUE TRUE TRUE TRUE TRUE TRUE

2 P13645 207023_x_at TRUE TRUE TRUE TRUE TRUE TRUE

3 P13645 210633_x_at TRUE TRUE TRUE TRUE TRUE TRUE

4 P13645 213287_s_at TRUE TRUE TRUE TRUE TRUE TRUE

5 P35908 207908_at TRUE TRUE TRUE TRUE TRUE TRUE

6 P08729 209016_s_at TRUE TRUE TRUE TRUE TRUE TRUE

16



> pairs <- jointUniquePairs$as.data.frame()

> pairsNotReportedByNetAffx = pairs[

+ (!pairs$NetAffx_Q & (pairs$DAVID_Q | pairs$EnVision_Q))

+ , c("Uniprot", "Affy")]

> head(pairsNotReportedByNetAffx)

Uniprot Affy

8 P08729 1558394_s_at

9 P08729 1558393_at

24 P14625 239451_at

27 P05787 230429_at

28 P05787 229879_at

51 P62805 234960_at

4 High-level wrapper methods and interactive data exploration

The JointIdMap, JointUniquePairs and CorrData classes provide a set of high level wrapper methods supporting inter-
active menu-driven selection of arguments and performance of multiple processing steps within a single method invocation.
The interactive session can generate either single or multiple data sets/plots corresponding to the user input selections or
these methods can be used non-interactively. The user is protected from some of the complexity of multiple processing
steps. The following functionality is supported through the methods arguments or by selection within the GUI:

- multiple or single GUI-based data exploration sessions
- optional subsetting on ID mapping identifiers or ID mapping resources
- plotting into existing or automatically created new device device
- copying a plot into the file with a specified ”zoom” (magnification factor).

5 Decision support

6 The package architecture

A few notes on the architecture of the package may be helpful. The package R.oo provides a reasonably simple class/method
framework based on the S3 class system.

6.1 Classes

The IdMapBase class is fundamental to the IdMappingRetrieval package. It contains a data frame whose columns include
two columns designated as primaryKey and secondaryKey, whose values are two ID types under study. An IdMapBase

object is usually obtained from methods of the package IdMappingRetrieval . Classes which extend IdMapBase are:
IdMap, IdMapCounts, JointIdMap, IdMapDiff, IdMapDiffCounts, UniquePairs, JointUniquePairs, Corr, Boot-

strap

They all inherit as.data.frame().
An IdMap object has a primaryKey which is truly a key: values are unique. All classes use the same as.data.frame

method, except JointIdMap, for which the notion of secondaryKey needs modification, because there are multiple sec-

ondaryKey columns.
Viewing the names of methods specific to each of these classes, use the R.oo function getMethods.Class and this

syntax:

names(getMethods.Class(JointIdMap)[["JointIdMap"]]).

To see the content of any method, use the usual syntax for S3 class methods, for example diffCounts.plot.JointIdMap.
To see the names of fields in a class (including “hidden” fields), use syntax like this:

getFields.Class(JointIdMap, private=TRUE).

17



To access the value of a field in an instance, use syntax like this: jointIdMap$.secondaryKey.
The rest of the classes are just containers for static auxiliary functions:
- Subset: handles data subsetting and merging operations
- DataFilter: provides various algorithms for data preprocessing
- Display: provides utility functions for graphics support, including rescaling of plots for export to files.
- Misc: contains miscellaneous helper functions.
Contents of the classes

7 Session information

> toLatex(sessionInfo())

� R version 3.0.2 (2013-09-25), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: IdMappingAnalysis 1.6.0, R.methodsS3 1.5.2, R.oo 1.15.8, rChoiceDialogs 1.0.4, rJava 0.9-4

� Loaded via a namespace (and not attached): RColorBrewer 1.0-5, boot 1.3-9, mclust 4.2, tools 3.0.2

8 References

[1] Liu G., NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res. 2003, 31(1):82-6.

[2] Huang D.W., Sherman B.T., Lempicki R.A. (2008) Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat. Protoc., doi: 10.1038/nprot.2008.211.

[3] Reisinger F., Corpas M., Hancock J., Hermjakob H., Birney E., Kahlem P.. ENFIN - An Integrative Structure for
Systems Biology. Data Integration in the Life Sciences Lecture Notes in Computer Science, 2008, Volume 5109/2008,
132-143, DOI: 10.1007/978-3-540-69828-9 13

[4] Day R.S., McDade K.K., Chandran U., Lisovich A., Conrads T.P., Hood B., Kolli V.S.K., Kirchner D., Litzi T.,
Maxwell G.L.. Identifier mapping performance for integrating transcriptomics and proteomics experimental results.
BMC Bioinformatics, 2011. 12: p. 213.

[5] Day R.S., Lisovich A.. DAVIDQuery: Retrieval from the DAVID bioinformatics data resource into R. R package
version 1.12.0., in Bioconductor Release, 2.9. 2010.

[6] Lisovich A., Day R.S., ENVISIONQuery: Retrieval from the ENVISION bioinformatics data portal into R. R package
version 1.2.0, in Bioconductor Release 2.9, 2011

[7] Lisovich A., Day R.S., The IdMappingRetrieval package in Bioconductor: Collecting and caching identifier mappings
from online sources. R package Version 1.1.0, in Bioconductor Development, 2.10. 2011.

[8] Lisovich A., Day R.S., The rChoiceDialogs package in CRAN: Collection of portable choice dialog widgets. R package
version 1.0.1 Published 2011-01-15.

[9] Bengtsson H., The R.oo package - Object-oriented programming with references using standard R code, Talk at the
DSC 2003 conference, Wienna, March 22, 2003.

18


	Introduction
	Overview of capabilities
	The setting and the problem statement

	Examples in detail
	Package setup
	Collecting the ID mapping data
	Preparing a JointIdMap object from multiple ID maps
	Individual characterization of ID maps.
	Comparison of two ID maps
	Performing a comparative evaluation of two ID maps based on integrating experimental results from two platforms.
	Preparing a data set for each ID pair
	Creating a merged data set for each ID pair
	Scatterplots for data corresponding to a selected ID pair

	Exploring merged data interactively using the high level wrappers 
	Evaluating and comparing Id Map quality using correlations
	Calculating and displaying the correlations
	Alternative endpoint: posterior probability of a "good" correlation base on a mixture model
	Comparisons of mapping services


	High-level wrapper methods and interactive data exploration
	Decision support
	The package architecture
	Classes

	Session information 
	References

