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1 This vignette
This vignette presents the ADaCGH2 package using:

e Three fully commented examples that deal with the usage of the different parallelization
options and types of objects (in particular, ff objects) available.

e Examples of using ADaCGH2 with CGHregions, Limma, and snapCGH.

e We show some benchmarking results with large data sets.

All of the runnable examples in this vignette use a small toy example (they need to run
in a reasonably short of time in a variety of machines). In the vignette called “ADaCGH2-
long-examples” we list example calls of all segmentation methods, with different options for
methods, as well as different options for type of input object and clustering. That other
vignette is provided as both extended help and as a simple way of checking that all the
functions can be run and yield identical results regardless of type of input and clustering.

2 Overview:

ADaCGH2 is a package for the analysis of CGH data. The main features of ADaCGH2 are:

e Parallelization of (several of) the main segmentation/calling algorithms currently avail-
able, to allow efficient usage of computing clusters. Parallelization can use either fork-
ing (in Unix-like OSs) or sockets, MPI, etc, as provided by package snow (http:
//cran.r-project.org/web/packages/snow/index.html).

Forking will probably be the fastest approach in multicore machines, whereas MPI
or sockets will be used with clusters made of several independent machines with few
CPUs/cores each.


http://cran.r-project.org/web/packages/snow/index.html
http://cran.r-project.org/web/packages/snow/index.html

e Optional storage of, and access to, data using the ff package (http://cran.r-project.
org/web/packages/ff/index.html)), making it possible to analyze data from very
large projects and/or use machines with limited memory.

e Parallelization and ff can be used simultaneously. WaviCGH |Carro et al.|(2010) (http:
//wavi.bioinfo.cnio.es), a web-server application for the analysis and visualization
of array-CGH data that uses ADaCGH2, consitutes a clear demonstration of the usage
of ff on a computing cluster with shared storage over NFS.

ADaCGH2 is a major re-write of our former package ADaCGH Diaz-Uriarte and Rueda
(2007) and version 2 of ADaCGH2 is, itself, a major rewrite of the version 1.x series. Over
time, we have improved the parallelization and, specially, changed completely the data han-
dling routines. The first major rewrite of ADaCGH2 included the usage of the ff package,
which allows ADaCGH2 to analyze data sets of more than four million probes in machines
with no more than 2 GB of RAM. The second major rewrite reimplemented all the reading
routines, and much of the analysis, which now allow a wider range of options with increased
speed and decreased memory usage, and also allows users to disable the usage of ff. Moreover,
in the new version, a large part of the reading is parallelized and makes use of temporary ff
objects and we allow parallelization of analysis (and data reading) using forking.

2.1 Terminology

The following is the meaning of some terms we will use repeatedly.

Jf object An object that uses the ff package. A tiny part of that object lives in memory,
in the R session, but most of the object is stored on the hard drive. The part that lives
in memory is just a pointer to the object that resides in the hard drive.

RAM objects The “usual” R objects (in our case, mainly data frames and matrices); these
are stored, or live, in memory.

Somewhat similar to what the documentation of the £f package does, we refer to these
objects, that reside in memory, as RAM objects. Technically, a given data frame,
for instance, need not be in RAM in a particular moment (that actual memory page
might have been swapped to disk). Regardless, the object is accessed as any other
object which resides in memory. Likewise, note that ff also have a small part that is
in memory, but the data themselves are stored on disk.

forking We copy literally from the vignette of the parallel package |R Core Team| (2013)):
“Fork is a concept from POSIX operating systems, and should be available on all R
platforms except Windows. This creates a new R process by taking a complete copy of
the master process, including the workspace and state of the random-number stream.
However, the copy will (in any reasonable OS) share memory pages with the master
until modified so forking is very fast.”

Forking is, thus, a reasonable way of parallelizing jobs in multicore computers. Note,
however, that this will not work across machines (for instance, across workstations in
clusters of workstations).

cluster We use it here to contrast it with forking. With cluster, tasks are sent to other R

processes using, for instance, MPI or any of the other methods provided by package
snow (e.g., PVM, sockets, or NWS).

For example, MPI (for “Message Passing Interface”) is a standardized system for parallel
computing, probably the most widely used approach for parallelization with distributed
memory machines (such as in clusters of workstations). The package Rmpi (and snow
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on top of Rmpi) use MPI. In the examples in this vignette, however, we will use clusters
of type socket, as these are available in several OSs (including Windows), and do not
require installation of MPI.

If we are running Linux, Unix, or other POSIX operating systems, in a single computer
with multiple cores we can use both forking and clusters (e.g., MPI or sockets). In most
cases forking will be preferable as we will avoid some communication overheads and it
will also probably use less total memory. If we are running Windows, however, we will
need to use a cluster even in a single multicore machine.

2.2 Suggested usage patterns summary

The following table provides a simple guide of suggested usage patterns with small to mod-
erate data sets:

Lots of RAM Little RAM
Single node, RAM objects (?), forking  ff objects, forking
many cores/node ff objects (7), forking
Many nodes, If objects, cluster ff objects, cluster

few cores/node

The question marks denote not-so-obvious choices, where the best decision will depend
on the actual details of number of nodes, size of data sets, speed of communication between
nodes, etc. For large data sets, the recommended usage involves always using ff objects.
Using ff objects is slightly more cumbersome, but can allow us to analyze very large data
sets in moderate hardware (see examples in section [§). Of course, what is “lots”, “many”,
and “large”, will depend on the arrays you analyze and the hardware.

The examples below cover all three possible usage patterns:

RAM objects, forking : section [4]
ff objects, cluster : section [f

ff objects, forking : section [6]

2.3 Usage: main steps and choices

ADaCGH2 includes functions that use as input, or produce as output, either ff objects or
RAM R objects. Some functions also allow you to choose between using forking and using
other mechanisms for parallelization.

For both interactive and non-interactive executions we will often execute the following in
sequence:

1. Check the original data and convert to appropriate objects (e.g., to ff objects).
2. Initialize the computing cluster if not using forking.
3. Carry out segmentation and calling

4. Plot the results

We cover each in turn in the remaining of this section and discuss alternative routes.



3 The data for all the examples

We will use a small, fictitious data set for all the examples, with six arrays/subjects and five
chromosomes.
The data are available as an RData file

> library(ADaCGH2)
> data(inputEx)
> summary (inputEx)

ID chromosome position L.1
Hs.101850: 1 Min. :1.000 Min. : 1180411 Min. :=1.07800
Hs.1019 1 1st Qu.:1.000 1st Qu.: 36030889 1st Qu.:-0.22583
Hs.105460: 1 Median :2.000 Median : 70805790 Median :-0.01600
Hs.105656: 1 Mean :2.284 Mean : 92600349 Mean :-0.03548
Hs.105941: 1 3rd Qu.:3.000 3rd Qu.:149843856 3rd Qu.: 0.16000
Hs.106674: 1 Max. :5.000 Max. 1243795357 Max. : 0.88300
(Other) :494 NA's :5
L.2 m4 mb L3
Min. :=0.795000 Min. :-0.1867  Min. :=4.67275 Min. :-13.273
1st Qu.:-0.139000 1st Qu.: 1.9790 1st Qu.:-0.02025 1st Qu.: 3.631
Median :-0.006000 Median : 2.2807 Median : 0.43725 Median : 3.925
Mean : 0.007684 Mean : 3.4504 Mean : 1.60159 Mean : 1.981
3rd Qu.: 0.134000 3rd Qu.: 5.8235 3rd Qu.: 3.04475 3rd Qu.: 4.110
Max. : 1.076000 Max. : 6.6043 Max. 1 9.60425 Max. : 6.374
NA's 115 NA's 141 NA's :9
mé

Min. :-0.7655

1st Qu.:-0.2260

Median :-0.0440

Mean :-0.0351

3rd Qu.: 0.1620

Max. : 0.7750

NA's :203
> head (inputEx)

ID chromosome position L.1 L.2 mé4
1%1180411%Hs.212680 Hs.212680 1 1180411 NA 0.038 6.22625
1%1188041.5%Hs. 129780 Hs.129780 1 1188042 NA 0.028 6.17425
1%1194444%Hs . 42806 Hs.42806 1 1194444 NA 0.042 6.17425
1%1332537%*Hs . 76239 Hs.76239 1 1332537 NA 0.285 5.62425
1%2362211*Hs . 40500 Hs.40500 1 2362211 NA 0.058 5.85125
1%2372287*Hs . 449936 Hs.449936 1 2372287 0.294 -0.006 5.68525
mb L3 m6

1%1180411*%Hs.212680  3.22625 6.038 NA
1%x1188041.5*Hs.129780 3.17425 6.028 NA
1%x1194444xHs . 42806 3.17425 6.042 NA
1%x1332537*Hs . 76239 2.62425 NA NA
1%x2362211*Hs .40500 2.85125 NA NA
1%x2372287+Hs . 449936  2.68525 NA NA



The data are are also available (in the /data subdirectory of the package) as an ASCII
text file in two formats: with columns separated by tabs and with columns separated by

spaceg|

4 Example 1: RAM objects and forking

This is the simplest procedure if you are not under Windows. It will work when data is small
(relative to available RAM) and the number of cores/processors in the single computing node
is large relative to the number of subjects. However, this will not provide any parallelism
under Windows: we use forking, as provided by the mclapply function in package parallel,
and forking is available for POSIX operating systems (and Windows is not one of those).

Using forking can be a good idea because, with fork, creating new process is very fast
and lightweight, and all the child process share memory pages until they start modifying
the objects, and you do not need to explicitly send those pre-existing objects to the child
processes. In contrasts, if we use other types of clusters (e.g., sockets or MPI), we need to
make sure packages and R objects are explicitly sent to the child or slave processes.

If you have lots of RAM (ideally all you would need is enough memory to hold one copy
of your original CGH data plus the return object), you will also probably use RAM objects
and not ff objects, as these are less cumbersome to deal with than ff objects. But see section
for other comments.

The steps for the analysis are:

e Read the input data.

e Carry out the segmentation.

4.1 Reading data and storing as a RAM object (a “usual” R object)

We provide here details on reading data from several different sources. Of course, in any
specific case, you only need to use one route.

4.1.1 Data available as a data frame in an RData file

As we said in section |3 the data are available as an R data frame (inputEx), which we have
saved as an RData file (inputEx.RData).

We will use inputToADaCGH to produce the three objects needed later for the segmen-
tation, and to carry out some checks for missing values, repeated identifiers and positions,
ete.

> fnameRdata <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.RData")
> inputToADaCGH(ff.or.RAM = "RAM",
+ RDatafilename = fnameRdata)

. done reading; starting checks
. checking identical MidPos
. checking need to reorder inputData, data.frame version

. done with checks; starting writing

! These two files are used in the example of the help for the cutFile function



. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1540479 82.3 2403845 128.4 1835812 98.1
Vcells 1412925 10.8 2287241 17.5 2130514 16.3

Saved objects with names

cgh.dat chrom.dat pos.dat probenames.dat

for CGH data, chromosomal data, position data, and probe names,
respectively, in environment

R_GlobalEnv .

We need to provide the path to the RData file, which we stored in the object fnameRData.
This RData file will contain a single data frame. In this data frame, the first three columns
of the data frame are the IDs of the probes, the chromosome number, and the position, and
all remaining columns contain the data for the arrays, one column per array. The names of
the first three column do not matter, but the order does. Names of the remaining columns
will be used if existing; otherwise, fake array names will be created.

Note the usage of ff.or.RAM = "RAM", which is different from that in section The
output from the call will leave several R objects in the global environment. The name of
the objects can be changed with the argument robjnames. These are your usual R objects
(data frames and vectors); thus, they are RAM objects.

4.1.2 Data available as an R data frame

Instead of accessing the RData file, we will directly use the data frame. This way, we use
inputToADaCGH basically for its checks. The first three columns of the data frame are the
IDs of the probes, the chromosome number, and the position, and all remaining columns
contain the data for the arrays, one column per array.

> data(inputEx) ## make inputEx available as a data frame with that name
> inputToADaCGH(ff.or.RAM = "RAM",
+ dataframe = inputEx)

. done reading; starting checks

. checking identical MidPos

. checking need to reorder inputData, data.frame version
. done with checks; starting writing

. done writing/saving probeNames



. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1540470 82.3 2403845 128.4 1835812 98.1
Vcells 1412853 10.8 2287241 17.5 2130514 16.3

Saved objects with names

cgh.dat chrom.dat pos.dat probenames.dat

for CGH data, chromosomal data, position data, and probe names,
respectively, in environment

R_GlobalEnv .

Skipping the call to inputToADaCGH Since our data are already available as an R data
frame, and if we are not interested in the checks provided by inputToADaCGH, we do not
need to call it. To prepare the data for later usage with pSegment we can just do as follows:

> data(inputEx)

> cgh.dat <- inputEx[, -c(1, 2, 3)]

> chrom.dat <- as.integer(inputEx[, 2])
> pos.dat <- inputEx[, 3]

4.1.3 Using input data from a text file

Our data can also be in a text file, with a format where the first three columns are ID,
chromosome, and position, and the remaining columns areznTayiﬂ. inputDataToADaCGH
allows this type of input and, inside, uses read.table.ff; this way, we can read a very large
data set and store it as an ff' object or a RAM object without exhausting the available RAM.

> fnametxt <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.txt")
> tmp <- inputToADaCGH(ff.or.RAM = "RAM",
+ textfilename = fnametxt)

textfile reading: reading the ID column
textfile reading: reading the chrom column
textfile reading: (parallel) reading of remaining columns
. done reading; starting checks
checking identical MidPos

checking need to reorder inputData, ff version

2If they are not, utilities such as awk, cut, etc, might be used for this purpose.



. done with checks; starting writing
. done writing/saving probeNames

. done writing/saving chromData

. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1570703 83.9 2403845 128.4 1835812 98.1
Vcells 1464594 11.2 2481603 19.0 2130514 16.3

Saved objects with names

cgh.dat chrom.dat pos.dat probenames.dat

for CGH data, chromosomal data, position data, and probe names,
respectively, in environment

R_GlobalEnv .

If you will be using a cluster created with makeCluster (see section you will not
want to use this options. You will need to create ff objects because, when using a cluster,
and to minimize transferring data and possibly exhausting available RAM, we have written
the code so that the slaves do not receive the data itself, but just pointers to the data (i.e.,
names of ff objects) that live in the disk.

Compressed text files The function inputToADaCGH will work with both compressed and
uncompressed files. However, if you are working with a really large text file, if you start from
a compressed file, you will have to add the time it takes to decompress the file; thus, you
might want to decompress it, outside R, before you start all of your work if you plan on
using this file repeatedly as input.

4.1.4 Using data from Limma or snapCGH
You can also use data from snapCGH and Limma. See section

4.1.5 Reading data from a directory

Reading data from a directory is discussed in more detail in section and it is the
preferred approach when we have a lot of data. Since saving the results as a RAM object is
not likely to be the way to go in such cases (we would exhaust available RAM), we do not
discuss it here any further.

4.2 Carrying out segmentation and calling

Segmentation and calling are carried out with the pSegment functions. Here we show just
one such example. Many more are available in the second vignette. Setting argument
typeParall to fork is not needed (it is the default), but we set it here explicitly for clarity.



> help(pSegment)

> haar.RAM.fork <- pSegmentHaarSeg(cgh.dat, chrom.dat,
+ merging = "MAD",
+ typeParall = "fork")

Since the input are RAM objects, the output is also a RAM object (a regular R object,
in this case a list).

> lapply(haar.RAM.fork, head)

$outSmoothed
L.1 L.2 m4 mb L3 m6

1 NA 0.0175353 5.939581 2.929741 6.055182 NA
2 NA 0.0175353 5.939581 2.929741 6.055182 NA
3 NA 0.0175353 5.939581 2.929741 6.055182 NA
4 NA 0.0175353 5.939581 2.929741 NA NA
5 NA 0.0175353 5.939581 2.929741 NA NA
6 0.05851487 0.0175353 5.939581 2.929741 NA NA
$outState

L.1 L.2 m4 mb L3 m6
1 NA O 1 1 1 NA
2 NA O 1 1 1NA
3 NA O 1 1 1NA
4 NA O 1 1 NANA
5 NA O 1 1 NANA
6 0O O 1 1 NANA
> summary (haar.RAM.fork[[1]])

L.1 L.2 m4 mb5

Min. :-0.18305 Min. :-0.080705 Min. :0.9303  Min. :=4.0270
1st Qu.:-0.10712 1st Qu.:-0.004725 1st Qu.:2.0171 1st Qu.: 0.0738
Median :-0.06615 Median : 0.017535 Median :2.1786 Median : 0.1857
Mean :-0.03548 Mean : 0.007684  Mean :3.4504  Mean : 1.6016
3rd Qu.: 0.05851 3rd Qu.: 0.017535 3rd Qu.:5.9396 3rd Qu.: 2.9014
Max. : 0.17439 Max. : 0.056750 Max. :5.9396 Max. : 9.0388
NA's :5 NA's 115 NA's 141

L3 mé

Min. :-12.960 Min. :-0.20148

1st Qu.: 3.919 1st Qu.:-0.09948

Median : 3.995 Median :-0.04680

Mean 0 1.981 Mean :-0.03510

3rd Qu.: 4.008 3rd Qu.: 0.06151

Max. : 6.055 Max. : 0.17410

NA's :9 NA's 1203

4.3 Plotting the results

Plotting produces PNG files for easier sharing over the Internet. The plotting function takes
as main arguments the names of the result from pSegment and the input objects to pSegment
(we will later see, for instance in section how to use results stored as ff objects). Setting
argument typeParall to fork is not needed (it is the default), but we set it here explicitly
for clarity.
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> pChromPlot (haar.RAM. fork,

+ cghRDataName = cgh.dat,

+ chromRDataName = chrom.dat,

+ posRDataName = pos.dat,

+ probenamesRDataName = probenames.dat,
+ imgheight = 350,

+ typeParall = "fork")

5 Example 2: ff objects and cluster

This procedure should work even with relatively small amounts of RAM, and it will also work
under Windows. However, using a cluster involves additional steps. For both interactive and
non-interactive sessions we will often execute the following in sequence:

1. Check the original data and convert to appropriate objects (e.g., to ff objects).
2. Initialize the computing cluster.
3. Carry out segmentation and calling

4. Plot the results
Compared to section [4] we introduce here the following new major topics:

e Using ff objects.

e Setting up a cluster.

5.1 Choosing a working directory

As we will use ff objects, we will read and write quite a few files to the hard drive. The
easiest way to organize your work is to create a separate directory for each project. At the
end of this example, we will remove this directory. All plot files and ff data will be stored in
this new directory.

(Just in case, we check for the existence of the directory first. We also store the current
working directory to return to it at the very end.)

> originalDir <- getwd()

> if(!file.exists("ADaCGH2_vignette_tmp_dir"))
+ dir.create("ADaCGH2_vignette_tmp_dir")
> setwd("ADaCGH2_vignette_tmp_dir")

It is very important to remember that the names of the ff objects that are exposed
to the user are always the same (i.e., chromData.RData, posData.RData, cghData.RData,
probeNames.RData). Therefore, successive invocations of inputToADaCGH, if they produce
ff output (i.e., ff.or.RAM = "ff") will overwrite this objects (and make them point to
different binary ff files on disk). In this vignette, we keep reusing inputToADaCGH, but note
that in all the cases we produce as output ff files (sections b.2.1}, [5.2.2} |5.2.4] 6.2.1]
, the data used as input are the same, so there is no problem here (although
we will leave binary ff objects on disk without a corresponding ff RData object on the R
session). In particular, note that when we show the usage of Limma and snapCGH objects
as input (section , we are using RAM objects (not ff objects) as output, so there is no
confusion.
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5.2 Reading data and storing as ff objects

Converting the original data to ff objects can be done either before or after initializing the
cluster (section 5.3)), as it does not use the computing cluster. The purpose of this step is to
write the ff files to disk, so they are available for the segmentation and ploting functions.

5.2.1 Data available as a data frame in an RData file

To allow the conversion to be carried out using data from previous sessions, the conversion
takes as input the name of an RData that contains plain, “regular” R objects (which, if
loaded, would be RAM objects).

> fnameRdata <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.RData")
> inputToADaCGH(ff.or.RAM = "ff",
+ RDatafilename = fnameRdata)

. done reading; starting checks
. checking identical MidPos
. checking need to reorder inputData, data.frame version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1573756 84.1 2403845 128.4 1835812 98.1
Vcells 1473313 11.3 2481603 19.0 2413186 18.5

Files saved in current directory
/tmp/RtmpapOBX0/Rbuild37dd6elec5£8/ADaCGH2/vignettes/ADaCGH2_vignette_tmp_dir
with names :

chromData.RData, posData.RData, cghData.RData, probeNames.RData.

The first command is used in this example to find the complete path of the example data
set. The actual call to the function is the second expression. Note that we used a path to
an RData file, and do not just use a RAM object. If you are very short of RAM, you might
want to do the conversion in a separate R process that exists once the conversion is done
and returns all of the RAM it used to the operating system. This we cover next in section
An alternative approach to try to minimize RAM is available if our data are in a text
file, as discussed in section [4.1.3]
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5.2.2 Converting from RData to ff objects in a separate process

With large data sets, converting from RData to ff can be the single step that consumes the
most RAM, since we need to load the original data into R. Even if, after the conversion to
ff, we remove the original data and call gc(), R might not return all of the memory to the
operating system, and this might be inconvenient in multiuser environments and/or long
running processes.

We can try dealing with the above problems by executing the conversion to ff in a
separate R process that is spawned exclusively just for the conversion. For instance, we
could use the mcparallel function (from package parallel) and do:

mcparallel (inputToADaCGH(ff.or.RAM = "ff",
RDatafilename = fnameRData),

silent = FALSE)

if (inherits (tableChromArray, "try-error")) {

>

+

+

>  tableChromArray <- mccollect()
>

+ stop("ERROR in input data conversion")
+

}

That way, the ff are produced and stored locally in the hard drive, but the R process
where the original data was loaded (and the conversion to ff carried out) dies immediately
after the conversion, freeing back the memory to the operating system.

5.2.3 Data available as an R data frame

Instead of accessing the RData file, we can directly use the data frame, as we did in section
412

> data(inputEx) ## make inputEx available as a data frame with that name

> inputToADaCGH(ff.or.RAM = "ff",
+ dataframe = inputEx)

. done reading; starting checks
. checking identical MidPos
. checking need to reorder inputData, data.frame version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1573747 84.1 2403845 128.4 1835812 98.1
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Vcells 1473308 11.3 2481603 19.0 2413186 18.5

Files saved in current directory

/tmp/RtmpapOBX0/Rbuild37dd6elec5£8/ADaCGH2/vignettes/ADaCGH2_vignette_tmp_dir
with names

chromData.RData, posData.RData, cghData.RData, probeNames.RData.

5.2.4 Using input data from a text file

Asin we can read from a text file. In this case, however, the output will be a set of ff
objects.

> fnametxt <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.txt")
> inputToADaCGH(ff.or.RAM = "ff",
+ textfilename = fnametxt)

textfile reading: reading the ID column
textfile reading: reading the chrom column
textfile reading: (parallel) reading of remaining columns
. done reading; starting checks
checking identical MidPos
checking need to reorder inputData, ff version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1573896 84.1 2403845 128.4 1835812 98.1
Vcells 1473345 11.3 2481603 19.0 2413186 18.5

Files saved in current directory
/tmp/RtmpapOBX0/Rbuild37dd6elecbf8/ADaCGH2/vignettes/ADaCGH2 _vignette_tmp_dir
with names

chromData.RData, posData.RData, cghData.RData, probeNames.RData.
5.2.5 Using data from Limma or snapCGH

You can also use data from snapCGH and Limma. See section
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5.2.6 Reading data from a directory

See section for further details. This option is the best option with very large data sets.
The initial data reading will use forking and, once we have saved the objects as ff objects,
we can apply all the subsequent analysis steps discussed in the rest of this section.

5.2.7 Moving a set of ff objects

This is not specific to ADaCGH2, but since this issue can come up frequently, we explain it
here. The paths of the ff files are stored in the object. How can we move this R object with
all the ff files? First, we save the R object and all the ff files:

ffsave(cghData, file = "savedcghData", rootpath = "./")

We then take the resulting RData object (possible a very large object), and load it in
the new location, rerooting the path:

ffload(file = "pathtofile/savedcghData", rootpath = getwd())

5.3 Initializing the computing cluster

Cluster initialization uses the functions provided in parallel. In the example we will use
a sockect cluster, since this is likely to run under a variety of operating systems and should
not need any additional software. Note, however, that MPI can also be used (in fact, that
is what we use in our servers). In this example we will use as many nodes as cores can be
detected.

> number.of.nodes <- detectCores()

> cl12 <- parallel::makeCluster (number.of.nodes, "PSOCK")
> parallel::clusterSetRNGStream(cl2)

> parallel::setDefaultCluster(cl2)

> parallel::clusterEvalQ(NULL, library("ADaCGH2"))

[[11]

(1] "ADaCGH2" "ff" "bit" "tools" "parallel" '"stats"
[7] "graphics" ‘'"grDevices" "utils" "datasets" ‘"methods" = '"base"
[[2]]

[1] "ADaCGH2" "ff£" "bit" "tools" "parallel" '"stats"
[7] "graphics" ‘'grDevices" "utils" "datasets" '"methods" "base"
([3]]

(1] "ADaCGH2"  "ff" "bit" "tools" "parallel" "stats"
[7] "graphics" ‘'"grDevices" "utils" "datasets" '"methods" "base"
[[4]1]

(1] "ADaCGH2" "ff£" "bit" "tools" "parallel" '"stats"
[7] "graphics" ‘"grDevices" "utils" "datasets" '"methods" "base"
(0511

(1] "ADaCGH2" "ff" "bit" "tools" "parallel" ‘'"stats"
[7] "graphics" ‘"grDevices" "utils" "datasets" "methods" "base"
[[61]
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[1] "ADaCGH2" "f£" "bit" "tools" "parallel" '"stats"
[7] "graphics" ‘"grDevices" "utils" "datasets" '"methods" "base"

> wdir <- getwd()
> parallel::clusterExport (NULL, "wdir")
> parallel::clusterEvalQ(NULL, setwd(wdir))

[[1]1]
[1] "/tmp/RtmpapOBX0/Rbuild37dd6elec5f8/ADaCGH2/vignettes/ADaCGH2_vignette_tmp_dir"

([211]
[1] "/tmp/RtmpapOBX0/Rbuild37dd6elec5f8/ADaCGH2/vignettes/ADaCGH2_vignette_tmp_dir"

([3]]
[1] "/tmp/RtmpapOBX0/Rbuild37dd6elec5£8/ADaCGH2/vignettes/ADaCGH2_vignette_tmp_dir"

[[4]1]
[1] "/tmp/RtmpapOBX0/Rbuild37dd6elec5f8/ADaCGH2/vignettes/ADaCGH2_vignette_tmp_dir"

[[5]1]
[1] "/tmp/RtmpapOBX0/Rbuild37dd6elec5f8/ADaCGH2/vignettes/ADaCGH2_vignette_tmp_dir"

[[6]1]
[1] "/tmp/RtmpapOBX0/Rbuild37dd6elec5£8/ADaCGH2/vignettes/ADaCGH2_vignette_tmp_dir"

The first two calls create a cluster and initialize the random number generatoi’] The
third expression sets the cluster just created as the default cluster. This is important: to
simplify function calls, we do not pass the cluster name around, but rather expect a default
cluster to be set up. The fourth line makes the ADaCGH2 package available in all the
nodes of the cluster (notice we did not need to do this with forking, as the child processes
shared memory with the parent).

The last three lines make sure the slave processes use the same directory as the master.
Because we created the cluster after changing directories (section this step is not really
needed here. But we make it explicit so as to verify it works, and as a reminder that you
will need to do this if you change directories AFTER creating the cluster. If you run on a
multinode cluster, you must ensure that the same directory exists in all machines. (In this
case, we are running on the localhost).

5.4 Carrying out segmentation and calling

Segmentation and calling are carried out with the pSegment functions. Here we show just
one such example. Many more are available in the second vignette.

> help(pSegment)

> haar.ff.cluster <- pSegmentHaarSeg('"cghData.RData",

+ "chromData.RData",
+ merging = "MAD",
+ typeParall = "cluster")

3We use the version from package parallel, instead of the one from BiocGenerics, as the last one is still
experimental.
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We can take a quick look at the output. We first open the ff objects (the output is a
list of ff objects) and then call summary on the list that contains the results of the wavelet
smoothing:

> lapply(haar.ff.cluster, open)
$outSmoothed

[1] TRUE

$outState

[1] TRUE

> summary (haar.ff.cluster[[1]][,])

L.1 L.2 m4 mb
Min. :-0.18305 Min. :-0.080705 Min. :0.9303 Min. :=4.0270
1st Qu.:-0.10712 1st Qu.:-0.004725 1st Qu.:2.0171 1st Qu.: 0.0738
Median :-0.06615 Median : 0.017535 Median :2.1786  Median : 0.1857
Mean :-0.03548 Mean : 0.007684 Mean :3.4504 Mean : 1.6016
3rd Qu.: 0.05851 3rd Qu.: 0.017535 3rd Qu.:5.9396 3rd Qu.: 2.9014
Max. : 0.17439 Max. : 0.056750 Max. :5.9396 Max. : 9.0388
NA's :5 NA's 115 NA's 141

L3 mé

Min. :-12.960  Min. :-0.20148
1st Qu.: 3.919 1st Qu.:-0.09948
Median : 3.995 Median :-0.04680
Mean . 1.981 Mean :-0.03510
3rd Qu.: 4.008 3rd Qu.: 0.06151
Max. : 6.055 Max. : 0.17410
NA's :9 NA's 1203

5.5 Plotting the results

The call here is the same as in section [4.3} except that we change the values for the arguments.
As we are using ff objects, we also need to first write to disk the (ff) object with the results.

> save(haar.ff.cluster, file = "hs_mad.out.RData", compress = FALSE)
> pChromPlot (outRDataName = "hs_mad.out.RData",

+ cghRDataName = "cghData.RData",

chromRDataName = '"chromData.RData',

posRDataName = "posData.RData",

probenamesRDataName = "probeNames.RData",

imgheight = 350,

typeParall = "cluster")

+ + + + +

Finally, we stop the workers and close the cluster

> parallel::stopCluster(cl2)

6 Example 3: ff objects and forking

This example uses ff objects, as in section [5] but it will not use a cluster but forking, as in
section [4l Therefore, we will not need to create a cluster, but we will need to read data and
convert it to ff objects.

Here we introduce no new major topics. Working with ff objects was covered in section
and forking was covered in section We simply combine these work-flows.

17



6.1 Choosing a working directory

As we will use ff objects, it will be convenient, as we did in section to create a separate
directory for each project, to store all plot files and ff data. Since we already did that above
(section we do not repeat it here. However, for real work, you might want to keep
different analyses associated to different working directories.

6.2 Reading data and storing as ff objects

We have here the same options as in section We repeat them briefly. A key difference
with respect to section is that we are not creating a cluster, so there will be no need to
export the current working directory to slave processes explictly (in contrast to [5.3)).

6.2.1 Data available as a data frame in an RData file

> fnameRdata <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.RData")
> inputToADaCGH(ff.or.RAM = "ff",
+ RDatafilename = fnameRdata)

. done reading; starting checks
. checking identical MidPos
. checking need to reorder inputData, data.frame version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1578030 84.3 2403845 128.4 1857048 99.2
Vcells 1479083 11.3 2481603 19.0 2480485 19.0

Files saved in current directory
/tmp/RtmpapOBX0/Rbuild37dd6elec5f8/ADaCGH2/vignettes/ADaCGH2 _vignette_tmp_dir
with names :

chromData.RData, posData.RData, cghData.RData, probeNames.RData.

6.2.2 Converting from RData to ff objects in a separate process

Even if we are using forking, we might still want to carry the conversion to ff objects in a
separate process, as we did in section [5.2.2] since the conversion to ff objects might be the
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step that consumes most RAM in the whole process and we might want to make sure we
return that memory to the operating system as soon as possible.

> mcparallel (inputToADaCGH(ff.or.RAM = "ff",

+ RDatafilename = fnameRdata),
+ silent = FALSE)

> tableChromArray <- collect()

> if(inherits(tableChromArray, "try-error")) {

+  stop("ERROR in input data conversion")

+

}
6.2.3 Data available as an R data frame
Instead of accessing the RData file, we can directly use the data frame, as we did in section
b.2.3l
6.2.4 Using input data from a text file

> fnametxt <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.txt")
> inputToADaCGH(ff.or.RAM = "ff",
+ textfilename = fnametxt)

textfile reading: reading the ID column
textfile reading: reading the chrom column
textfile reading: (parallel) reading of remaining columns
. done reading; starting checks
checking identical MidPos
checking need to reorder inputData, ff version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1578167 84.3 2403845 128.4 1857048 99.2
Vcells 1478986 11.3 2481603 19.0 2480485 19.0

Files saved in current directory
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/tmp/RtmpapOBX0/Rbuild37dd6elec5£8/ADaCGH2/vignettes/ADaCGH2 _vignette_tmp_dir
with names :
chromData.RData, posData.RData, cghData.RData, probeNames.RData.

6.2.5 Using data from Limma or snapCGH
You can also use data from snapCGH and Limma. See section

6.2.6 Reading data from a directory

This is probably the best option for very large input data. We will read all the files in a
given directory (except for those you might explicitly specify not to). Even if your original
file follows the format of the data file in you might want to convert it to the format
used here (where each column is a file) as the time it takes to convert the file will be more
than compensated by the speed ups of reading, in R, each file on its own. With very large
files, it is much faster to read the data this way (we avoid having to loop many times over
the file to read each column). Reading the data is parallelized, which allows us to speed up
the reading process significantly (the parallelization uses forking, and thus you will see no
speed gains in Windows). Finally, to maximize speed and minimize memory consumption,
we use ff objects for intermediate storage.

6.2.7 Cutting the original file into one-column files

We provide a simple function, cutFile, to do this job. Here we create a directory where
we will place the one-column files (we first check that the directory does not exis@. Note
that this will probably NOT work under Windowf] , and thus we skip using cutFile under
Windows, and use a directory where we have stored the files split by column.

> if( (.Platform$0S.type == "unix") && (Sys.info()['sysname'] != "Darwin") ) {
+  fnametxt <- list.files(path = system.file("data", package = "ADaCGH2"),
+ full.names = TRUE, pattern = "inputEx.txt")
+ if(file.exists("cuttedFile")) {
+ stop("The cuttedFile directory already exists. ",
+ "Did you run this vignette from this directory before? ",
+ "You will not want to do that, unless you modify the arguments ",
+ "to inputToADaCGH below")
+ } else dir.create("cuttedFile")
+ setwd("cuttedFile")

+ cutFile(fnametxt, 1, 2, 3, sep = "\t")

+ cuttedFile.dir <- getwd()

+ setwd("../")

+ } else {

+ cuttedFile.dir <- system.file("example-datadir",

+ package = "ADaCGH2")
+ }

We create a new directory and carry out the file cutting there since the upper level
directory is already populated with other files we have been creating. If we cut the file in
the upper directory, we would later need to specify a lengthy list of files to exclude in the

41f it exists and contains files, inputToADaCGH will probably fail, as it is set to read all the files in the
directory.

5Under Macs it might or might not work; in all of the Macs we have tried it, it works, but not on the
testing machine at BioC.
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arguments to inputToADaCGH. To avoid that, we create a directory, and leave the files in the
newly created directory. After cutting, we return to the former level directory, to keep that
directory with only the files for input.

It is important to realize that the previous paragraph, which might seem a mess, does
not reflect the way you would usually work, which would actually be much simpler, and
something like the following:

1. Create a directory for your new project (lets call this directory d1).

[\

. Copy the text file with your big txt file with data to di; lets call this file afile.txt.
3. In R, move to d1 (for example, setwd(" /d1")).

4. Use cutFile: cutFile("afile.txt", 1, 2, 3).

ot

. Call inputToADaCGH: inputToADaCGH(ff.or .RAM = "ff", path = getwd(), excludefile
= "afile.txt")

(In this vignette the work flow was not as easy because we are running lots of different
examples, with several different work flows.)

cutFile will run several jobs in parallel to speed up the cutting process, launching by
default as many jobs as cores it can detect, and will produce files with the required naming
conventions of inputToADaCGH. Note that cutFile is unlikely to work under Windows.

If you do not want to use cutFile you can use utilities provided by your operating
system. The following is a very simple example of using cut under bash (which is not unlike
what we do internally in cutFile) to produce one-column files from a file called Data.txt,
with 77 arrays/subjects, where cutting the data part is parallelized over four processors:

cut -f1 Data.txt > ID.txt
cut -f2 Data.txt > Chrom.txt
cut -f3 Data.txt > Pos.txt

for i in {4..20}; do cut -f$i Data.txt > col_$i.txt; done &
for i in {21..40}; do cut -f$i Data.txt > col_$i.txt; done &
for i in {41..60}; do cut —-f$i Data.txt > col_$i.txt; done &
for i in {61..80}; do cut -f$i Data.txt > col_$i.txt; done &

After you have cut the file, each file contains one column of data. Three of the files must
be named "ID.txt", "Chrom.txt", and "Pos.txt". The rest of the files contain the data
for each one of the arrays or subjects. The name of the rest of the files is irrelevant.

When using inputDataToADaCGH with a directory, the output can be either ff objects or
RAM objects. However, the latter will rarely make sense (it will be slower and we can run
into memory contraints); see section

> inputToADaCGH(ff.or.RAM = "ff",
+ path = cuttedFile.dir,
+ verbose = TRUE)

Note: Directory reading: we will be reading 6
files, not including ID, Chrom, and Pos.

If this is not the correct number of files,
stop this process, verify why (did cutFiles
work correctly? are you using a directory with
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other files?, etc), and run again.
These are the files we will try to read:
col_4.txt
col_b.txt
col_6.txt
col_7.txt
col_8.txt
col_9.txt
directory reading: reading the ID file
directory reading: reading the chromosome file
directory reading: reading the Positions file
directory reading: parallel reading of column names
directory reading: parallel reading of data columns
. done reading; starting checks
. checking identical MidPos
checking need to reorder inputData, ff version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData

. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1578832 84.4 2403845 128.4 1857048 99.2
Vcells 1479731 11.3 2481603 19.0 2480485 19.0

Files saved in current directory
/tmp/RtmpapOBX0/Rbuild37dd6elec5£8/ADaCGH2/vignettes/ADaCGH2 _vignette_tmp_dir
with names :

chromData.RData, posData.RData, cghData.RData, probeNames.RData.

We have used the previously cut files in this example. You can also check the files that
live under the “example-datadir” directory and you will see six files with names starting with
“col”, which are the data files, and the files "ID.txt", "Chrom.txt", and "Pos.txt". (That
is the directory we would use as input had we used Windows.)
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Note that, to provide additional information on what we are doing we are calling the
function with the (non-default) verbose = TRUE, which will list all the files we will be read-
ing.

Beware of possible different orderings of files. When reading from a directory,
and since each column is a file, the order of the columns (and, thus, subjects or arrays) in
the data files that will be created can vary. In particular, the command 1list.files (which
we use to list of the files) can produce different output (different order of files) between
operating systems and versions of R. What this means is that, say, column three does not
necessarily refer to the same subject or array. Always use the column names to identify
unambiguously the data and the results.

What about performing this step in a separate process? In sections[5.2.2]and [6.2.2]
we performed the data preparation in a separate process, to free up RAM to the OS right
after the conversion. You can do that too here if you want, but we have not found that
necessary, since the memory consumption when reading column by column is often small.
See examples with large data sets in section

6.3 Carrying out segmentation and calling
The call is similar to the one in except for the argument typeParall.

> haar.ff.fork <- pSegmentHaarSeg("cghData.RData",

+ "chromData.RData",
+ merging = "MAD",
+ typeParall = "fork")

6.4 Plotting the results

The call here is the same as in section except for argument typeParall.

> save(haar.ff.fork, file
> pChromPlot (outRDatalName "haar.ff.fork.RData",

+ cghRDataName "cghData.RData",
chromRDataName = '"chromData.RData',
posRDataName = "posData.RData",
probenamesRDataName = '"probeNames.RData",
imgheight = 350,

typeParall = "fork")

"haar.ff.fork.RData", compress = FALSE)

+ + + + +

7 Input and output to/from other packages

7.1 Input data from Limma and snapCGH

Many aCGH studies use pre-processing steps similar to those of gene expression data.
The MAList object, from Limma and SegList object, from snapCGH, are commonly used
to store aCGH information. The following examples illustrate the usage of the function
inputToADaCGH to convert MAList and SegList data into a format suitable for ADaCGHZ2.

We will start with objects produced by snapCGH. The following code is copied from the
snapCGH vignette (pp. 2 and 3). Please check the original vignette for details. In sum-
mary, a set of array files are read, the data are normalized and, finally, averaged over clones.
snapCGH uses limma for the initial import of data and, next, with the read.clonesinfo
function adds additional information such as chromosome and position. The MA object cre-
ated is of class MAList, but with added information (compared to a basic, original, limma
MAList object). MA2 is of type SegList.
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> require("limma")

> require("snapCGH")

> datadir <- system.file("testdata", package = "snapCGH")

> targets <- readTargets("targets.txt", path = datadir)

> RG1 <- read.maimages(targets$FileName, path = datadir, source = "genepix")

Read /home/biocbuild/bbs-2.13-bioc/R/library/snapCGH/testdata/10Mbslide28.gpr
Read /home/biocbuild/bbs-2.13-bioc/R/1library/snapCGH/testdata/10Mbslide29.gpr

## Thi is snapCGH-specific

RG1 <- read.clonesinfo("cloneinfo.txt", RGl, path = datadir)
RG1$printer <- getLayout (RG1$genes)

types <- readSpotTypes("SpotTypes.txt", path = datadir)
RG1$genes$Status <- controlStatus(types, RG1)

vV V Vv Vv Vv

Matching patterns for: ID Name Chr
Found 21 CTD-

Found 9 CTA-

Found 405 Chrom8

Found 66 Chrom3

Found 75 Chroml

Setting attributes: values Color

> RG1$design <- c(-1, -1)

> RG2 <- backgroundCorrect (RG1, method = "minimum") ## class RGList

> MA <- normalizeWithinArrays(RG2, method = "median") ## class MAList
> class(MA)

[1] "MAList"
attr(, "package")
[1] "limma"

> ## now obtain an object of class SeglList
> MA2 <- processCGH(MA, method.of.averaging = mean, ID = "ID")

Averaging duplicated clones

Processing chromosome 1
Processing chromosome 2
Processing chromosome 3
Processing chromosome 4
Processing chromosome 5
Processing chromosome 6
Processing chromosome 7
Processing chromosome 8
Processing chromosome 9
Processing chromosome 10
Processing chromosome 11
Processing chromosome 12
Processing chromosome 13
Processing chromosome 14
Processing chromosome 15
Processing chromosome 16
Processing chromosome 17
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Processing chromosome 18
Processing chromosome 19
Processing chromosome 20
Processing chromosome 21
Processing chromosome 22

> class(MA2)
[1] "SegList"
attr(,"package")
[1] "snapCGH"

All the information (intensity ratios and location) is available in the MA and MA2 objects.
We can directly convert them to ADaCGH2 objects (we set na.omit = TRUE as the data
contain missing values). The first call process the MAList and the second the SegList.

In this section, we use the argument robjnames, to produce as output a set of RAM
objects with a different set of names from the default. (Note that we could also have produced

ff files as output, using the option ff.or .RAM = "ff").

> tmp <- inputToADaCGH(MAList = MA,
+ robjnames = c("cgh-ma.dat", "chrom-ma.dat",
+ "pos-ma.dat", "probenames-ma.dat"))

. missing values in Position or Chromosome; removing those rows
. done reading; starting checks

checking identical MidPos

We have identical MidPos!!!
checking need to reorder inputData, data.frame version
. reordering inputData, data.frame version

. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1596187 85.3 2403845 128.4 1869793 99.9
Vcells 1565658 12.0 2685683 20.5 2685675 20.5

Saved objects with names
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cgh-ma.dat chrom-ma.dat pos-ma.dat probenames-ma.dat

for CGH data, chromosomal data, position data, and probe names,
respectively, in environment

R_GlobalEnv .

> tmp <- inputToADaCGH(MAList = MA2,

+ robjnames = c("cgh-ma.dat", "chrom-ma.dat",
+ "pos-ma.dat", "probenames-ma.dat"),
+ minNumPerChrom = 4)

. done reading; starting checks
checking identical MidPos
checking need to reorder inputData, data.frame version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1596635 85.3 2403845 128.4 1869793 99.9
Vcells 1561537 12.0 2685683 20.5 2685675 20.5

Saved objects with names

cgh-ma.dat chrom-ma.dat pos-ma.dat probenames-ma.dat

for CGH data, chromosomal data, position data, and probe names,
respectively, in environment

R_GlobalEnv .

We need to change the argument to minNumPerChrom because, after the data processing
step in processCGH, chromosome 21 has only four observations.

The original MAList as produced directly from limma do not have chromosome and
position information. That is what the read.clonesinfo function from snapCGH did. To
allow using objects directly from limma and incorporating position information, we will use
an approach to directly mimicks that in snapCGH. If you use and MAList you can also
provide a cloneinfo argument; this can be either the full path to a file with the format
required by read.clonesinfo or, else, the name of an object with (at least) three columns,
names ID, Chr, and Position.

We copy from the limma vignette (section 3.2, p.8), changing the names of objets by
appending “.limma”

> targets.limma <- readTargets("targets.txt", path = datadir)
> RG.limma <- read.maimages (targets.limma, path = datadir,
+ source="genepix")
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Read /home/biocbuild/bbs-2.13-bioc/R/library/snapCGH/testdata/10Mbslide28.gpr
Read /home/biocbuild/bbs-2.13-bioc/R/1library/snapCGH/testdata/10Mbslide29.gpr

> RG.limma <- backgroundCorrect (RG.limma, method="normexp",
+ offset=50)

Array 1 corrected
Array 2 corrected
Array 1 corrected
Array 2 corrected

> MA.limma <- normalizeWithinArrays(RG.limma)

We can add the chromosomal and position information in two different ways. First, as
in read.clonesinfo or, else, we can provide the name of a file (with the same format as
required by read.clonesinfo). Note that fclone is a path (and, thus, a character vector).

> fclone <- list.files(path = system.file("testdata", package = "snapCGH"),
+ full.names = TRUE, pattern = "cloneinfo.txt")
> fclone

[1] "/home/biocbuild/bbs-2.13-bioc/R/library/snapCGH/testdata/cloneinfo.txt"

> tmp <- inputToADaCGH(MAList = MA.limma,

+ cloneinfo = fclone,
+ robjnames = c("cgh-ma.dat", "chrom-ma.dat",
+ "pos-ma.dat", "probenames-ma.dat"))

Assuming cloneinfo is a file (possibly with full path)
. missing values in Position or Chromosome; removing those rows

. done reading; starting checks
checking identical MidPos
We have identical MidPos!!!
checking need to reorder inputData, data.frame version
. reordering inputData, data.frame version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end
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used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1597726 85.4 2403845 128.4 1869793 99.9
Vcells 1603387 12.3 2685683 20.5 2685675 20.5

Saved objects with names

cgh-ma.dat chrom-ma.dat pos-ma.dat probenames-ma.dat

for CGH data, chromosomal data, position data, and probe names,
respectively, in environment

R_GlobalEnv .

Alternatively, we can provide the name of an object with the additional information. For
illustrative purposes, we can use here the columns of the MA object.

> acloneinfo <- MA$genes
> tmp <- inputToADaCGH(MAList = MA.limma,

+ cloneinfo = acloneinfo,
+ robjnames = c("cgh-ma.dat", "chrom-ma.dat",
+ "pos-ma.dat", "probenames-ma.dat"))

Assuming cloneinfo is an R data frame
. missing values in Position or Chromosome; removing those rows

. done reading; starting checks
checking identical MidPos
We have identical MidPos!!!
checking need to reorder inputData, data.frame version
. reordering inputData, data.frame version
. done with checks; starting writing
. done writing/saving probeNames
. done writing/saving chromData
. done writing/saving posData

. done writing/saving cghData

Calling gc at end
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1597682 85.4 2403845 128.4 1869793 99.9
Vcells 1592691 12.2 2685683 20.5 2685675 20.5

Saved objects with names
cgh-ma.dat chrom-ma.dat pos—ma.dat probenames-ma.dat
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for CGH data, chromosomal data, position data, and probe names,
respectively, in environment
R_GlobalEnv .

7.2 Using CGHregions

The CGHregions package Vosse and van de Wiel (2009)) is a BioConductor package that
implements a well known method [van de Wiel and van Wieringen (2007) for dimension
reduction for aCGH data (see a review of common regions issues and methods in Rueda and
Diaz-Uriarte (2010])).

The CGHregions function accepts different type of input, among others a data frame.
The function outputToCGHregions produces that data frame, ready to be used as input to
CGHregions (for the next example, you will need to have the CGHregions package installed).

Note: it is up to you to deal with missing values!!! In the example below, we do a
simple na.omit, but note that we are now working with data frames. Extending the usage
of this, and other methods, to much larger data sets, using ff, and properly dealing with
missing values, is beyond the scope of this package.

> forcghr <- outputToCGHregions (haar.ff.cluster)
> if (require (CGHregions)) {

+ regionsl <- CGHregions(na.omit(forcghr))

+ regionsl

+

}

(11 107
[1] 2.00000000 0.08539095 6.00000000
[1] "Tuning on small data set finished...started with entire data set"
[11 1070
[1] 2.00000000 0.08333333 6.00000000
[1] "c = 1, nr of regiomns: 7"
[1] "Finished with entire data set."
cghRegions (storageMode: lockedEnvironment)
assayData: 7 features, 6 samples
element names: regions
protocolData: none
phenoData: none

featureData
featureNames: 1 2 ... 7 (7 total)
fvarLabels: Chromosome Start ... AveDist (5 total)

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:

Please note that outputToCGHregions does NOT check if the calls are something that
can be meaningfully passed to CGHregions. In particular, you probably do NOT want to
use this function when pSegment has been called using merging = "none".

> ## We are done with the executable code in the vignette.

> ## Restore the directory
> setwd(originalDir)
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8 (Non-runnable) Examples with large data sets and a com-
parison of approaches

We discuss here a specific example to give you a rough idea of timings and preferred ap-
proaches for analyzing very large data sets.

8.1 Data set and hardware

We will use a simulated data set that contains 6,067,433 rows and 1000 columns of data;
these are, thus, data for an array with 6 million probes and data for 1000 subjects. In some
examples shown below, we use smaller subsets of the same data (with only 200 or 50 columns)
and in some cases we will use a larger data set with 2000 subjects. There are 421,000 missing
values per data column. The ASCII file with the data for the 1000 column data is about
96 GBﬁ and the RData for those same data is 46 GB (without compression; 41 GB with
the standard R compression); in a freshly started R session, loading the RData will use 46
GB (as reported by gc()). We will analyze the full data set with 1000 columns, and some
smaller versions of that data set (with 200 and 50 data columns).

The examples below were run on a Dell PowerEdge C6145 chasis with two nodes. FEach
node has 4 AMD Opteron 6276 processors; since each processor has 16 cores, each node
has 64 cores. One node has 256 GB RAM and the other 384 GB of RAM. Both nodes are
connected by Infiniband (40Gb/s). For the data presented here, when using a single node,
the data live on an xfs partition of a RAIDO array of SAS disks (15000 rpm) that are local
to the node doing the computations. When using the two nodes, the data live on that same
local SAS drive, which is seen by the other node using a simple NFS setup (we have also used
distributed file systems, such as FhGFS, but they have tended to be a lot slower in these
experiments; your mileage might vary). Therefore, in the table entries below, executions
using both nodes will indicate “124 cores”[]

We will also show some examples run on an HP Z800 workstation, with 2 Intel Xeon
E5645 processors (each processor has six cores), and 64 GB of RAM. The data live on an
ext4 partition on a SATA disk (7200 rmp). In the tables, this is indicated as “Coleonyx, 12
cores” (table with results for reading data) or by the number 12 in the column for number
of cores.

In both systems, the operating system is Debian GNU/Linux (a mixture of Debian testing
and Debian unstable). The Dell PowerEdge nodes were running version R-2.15.1 as available
from the Debian repository (v. 2.15.1-5) or, later, R-3.0.1, patched (different releases, as
available through May and June of 2013), and compiled from sources. The Xeon workstation
was running R-2.15.1, patched version (2012-10-02 r60861), compiled from sources or, later
R-3.0.1, patched (different releases, as available through May and June of 2013). Open MPI
is version 1.4.3-2 (as available from Debian).

As a reference for the size of the data set, the RData object with the 1000 columns, when
loaded into R in the PowerEdges, takes 13 minutes to load and uses a total of about 46 GB
(45.7 from calls to gc before and after loading the object, and adding Ncells and Vcells, or
45.6 as reported by object.size). Note that this is not the result of the object being a data
frame and having a column with identifiers (a factor), instead of being a matrix; a similarly
sized matrix with just the numeric data for the probes (i.e., without the first three columns
of ID, chromosome, and location) has a size of 45.2 GB (therefore, the difference of 300 MB

6 All sizes are computed from the reported size in bytes or megabytes, using 1024, or powers of 1024, as
denominator.

7124 is not a typo; it is 124, even if the total number of cores is 128 = 64 % 2. This is due to the
following documented issue with Open MPI and Infiniband: http://www.open-mpi.org/community/lists/
users/2011/07/17003. php, and since 1282 = 16384, we are hitting the limit, and we have not had a chance
to correct this problem yet. Regardless, the penalty we would pay would be a difference of 4 process out of
124.
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due to the first column, ID, being a factor with the identifiers, is minute relative to the size
of the matrix).
For the two tables below, the meaning of columns is as follows:

Wall time The “elapsed” entry returned by the command system.time. This is the real
elapsed time since the function was called.

It is important to understand that these timings can be variable, and we show here a
single number.

Max. mem (gc) The sum of the two rows of the “max used” column reported by gc(), in
R, at the end of the execution of the given function. This number cannot reflect all
the memory used by the function if the function spawns other R processes.

Max. ¥ mem. A simple attempt to measure the memory used by all the processesﬂ Right
before starting the execution of our function, we call the operating system command
free and record the value reported by the “-/4 buffers/cache” row. Then, while the
function is executing, we record, every 0.5 seconds, that same quantity. The largest
difference between the successive measures and the original one is the largest RAM
consumption. Note that this is an approximation. First, if other process start execut-
ing, they will lead to an overestimation of RAM usage; this, however, is unlikely to
have had serious effects (the systems were basically idle, except for light weight cron
jobs). Second, sampling is carried out every 0.5 seconds, so we could miss short peaks
in RAM usage (at least one likely example of such underestimation shows in the tables
below).

Columns The number of data columns of the data set.
Method The analysis method (either HaarSeg or CBS —DNAcopy).

Fork/MPI Whether forking (viamclapply) or MPI (using the facilities provided by package
Rmpi, which are called from package snow) are used to parallelize execution. The
two “NP” entries refer to non-parallelized execution, using the original packagesﬂ

Cores Number of cores, and machine. 64: 64 cores in a single node of the Dell PowerEdge
C6145. 124: 124 cores, using both nodes of the Dell PowerEdge. 12: 12 cores in the
7800 HP Workstation.

ff/RAM If the data for the analysis had been stored as an ff object, or as a data frame
inside an RData that was loaded before the analysis.

For the table for reading data, all results, except for the one indicated in the table,
correspond to using a single node in the Dell PowerEdge C6145 (64 cores).

8 Just adding the entries given by top or ps will not do, and will overestimate, sometimes by a huge amount,
the total memory used.

9The packages are DNAcopy, as available from BioConductor, and the HaarSeg package, available from
R-forge: https://r-forge.r-project.org/projects/haarseg/; Ben-Yaacov and Eldar| (2009))
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8.2 Reading data

Table 1: Time and memory usage when reading data

Columns Wall time Max. mem. Max. ¥ mem., GB
(minutes)  (gc), GB
Directory to ff 2000 13.9 1.3 39.1
Directory to ff 1000 6.1 1.3 41.21
Directory to ff 500 4.6 1.3 39.7
Directory  to  ff 1000 88 1.3 8.4
(Coleonyx, 12 cores)
Txt file to ff 1000 2630 1.3 NA (not calculated)
RData to ff 1000 29.6 169 168.3
Directory to data 1000 22 + 22 96 NA. Output unus-
frame (RAM object) able for analysis
RData to data frame 1000 22 + 2b 139 NA. Output unus-
(RAM object) able for analysis
Directory to data 200 7.7+ 04 20 38
frame (RAM object)
Directory to ff 200 3.6 1.3 38
Directory to data 100 8.7+ 0.3 105 30
frame (RAM object)
Directory to ff 100 3.6 1.3 32
Directory to ff 50 3.2 1.3 28
Directory to data 50 5.8 +0.1° 5.8 27

frame (RAM object)

& The 2 reflects the time needed to save the resulting data frame to an RData file.
> The 2 reflects the time needed to save the resulting data frame to an RData file.
¢ The 0.4 reflects the time needed to save the resulting data frame to an RData file.
4 The 0.3 reflects the time needed to save the resulting data frame to an RData file.

¢ The 0.1 reflects the time needed to save the resulting data frame to an RData file.
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8.3 Analyzing data

Table 2: Time and memory usage of segmentation with default options

Method  Fork Cores  ff/RAM Columns Wall time (min.)  Max. Max. X
/MPI mem. mem.,
(gc), GB GB
CBS MPI 124 ff 1000 313 0.14 53
CBS MPI 64 ff 1000 545 0.14 ol
CBS Fork 64 ft 2000 705.3 0.16 45.7
CBS Fork 12 ff 2000 2414.4 0.15 19.3
CBS Fork 64 ftf 1000 339 0.136 41
CBS Fork 12 ff 1000 1184.0 0.142 13.8
CBS Fork 64 ft 500 185.8 0.133 41
HaarSeg MPI 124 ff 1000 12.3 0.145 38.5
HaarSeg  MPI 64 ff 1000 9.5 0.145 38.5
HaarSeg MPI 12 ff 1000 36 0.144 7.2
HaarSeg  Fork 64 ff 2000 18.7 0.15 28.4
HaarSeg  Fork 12 ff 2000 57.4 0.16 10.1
HaarSeg  Fork 64 ff 1000 7.9 0.14 27
HaarSeg  Fork 12 ff 1000 32 0.129 7.3
HaarSeg  Fork 64 ff 200 2.3 0.135 28.6
HaarSeg  Fork 64 ft 500 4.6 0.13 26
HaarSeg Fork 10t ff 1000 33.3 0.142 5.9
HaarSeg  Fork 64 ft 50 0.5 0.133 20.6
HaarSeg  Fork 64 RAM 50 0.7 + 2.5 + 0.9° 14.4 140
HaarSeg MPI 64 ff 50 0.63 0.14 24.6
HaarSeg  Fork 64 RAM 1000 NA NA Cannot
allocate
memory
HaarSeg  Fork 64 RAM 200 NA NA Cannot
allocate
memory

4 Since only one process, same as previous column.
¢ 0.7 + 2.5 + 0.9: load data, analyze, and save results.
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Table 3: Time and memory usage of segmentation without merging and comparison with non-
parallized executions. These examples have all been run on the Dell Power Edges.

Method  Fork Cores  ff/RAM Columns Wall time (min.)  Max. Max. X
/MPI memn. mem.,
(gc), GB GB
HaarSeg  Fork 64 ff 100 1.2 0.13 24.5
HaarSeg  Fork 10 ff 1000 23.5 0.142 5.9
HaarSeg  Fork 20 ft 1000 12.3 0.137 10.0
HaarSeg  Fork 40 ff 1000 7.4 0.142 17.6
HaarSeg  Fork 50 ff 1000 6.7 0.139 21.2
HaarSeg  Fork 64 ff 1000 6.4 0.142 26.9
HaarSeg  Fork 10 ff 2000 49.7 0.16 8.0
HaarSeg  Fork 20 ff 2000 26.3 0.16 11.9
HaarSeg  Fork 40 ft 2000 15.4 0.16 19.5
HaarSeg  Fork 50 ft 2000 13.3 0.16 23.2
HaarSeg  Fork 64 ft 2000 11.9 0.16 28.4
CBS Fork 64 ft 100 55.9 0.13 35.3
CBS Fork 10 ft 1000 1855.4 0.135 8.6
CBS Fork 20 ft 1000 939.8 0.135 14.9
CBS Fork 40 ft 1000 513.5 0.136 27.0
CBS Fork 50 ff 1000 438.6 0.142 33.1
CBS Fork 64 ff 1000 350.3 0.142 41.3
CBS Fork 10 ff 2000 3770.9 0.15 11.1
CBS Fork 20 ft 2000 1878.8 0.16 16.5
CBS Fork 40 ft 2000 1007.0 0.15 28.8
CBS Fork 50 ff 2000 857.1 0.16 35.3
CBS Fork 64 ft 2000 717.3 0.163 41.9
HaarSeg NP - RAM 100 0.95 +22.9 + 1.4> 12,5 12.54
CBS NP - RAM 100 0.95 + 1698 + 6.7 40 404

> 0.95 + 22.9 + 1.4: load data, analyze, and save results. Since there are missing values in the data, and the
original HaarSeg code does not deal with missing values, we are forced to remove NAs array-per-array, and make
repeated calls to the function. If there are no missing values in this data set, the total time of analysis (i.e.,
sending the whole matrix at once and not checking for, nor removing, NAs) is 3.3 minutes.

0.95 + 1698 + 6.7: load data, analyze, and save results. The analysis involves calling the CNA function to create
the CNA object (5.3 min), calling the smooth.CNA function to smooth the data and detect outlier (83.2 minutes),
and segmenting the data with the segment function (1609.5 minutes).
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8.4

1.

Comments and recommended usage patterns

Reading data and trying to save it as a RAM object, a usual in-memory data frame,
will quickly exhaust available memory. For these data, we were not able to read data
sets of 100 or more columns. Part of the problem lies on the way memory is handled
and freed in the slaves, given that we are returning actual lists. In contrast, when
saving as ff objects, the slaves are only returning tiny objects (just pointers to a file).

. Saving data as RData objects will also not be an option for large numbers of columns

as we will quickly exhaust available memory when trying to analyze them.

. In a single machine, and for the same number of cores, analyzing data with MPI is

often generally slower than using forking, which is not surprising. Note also that with
MPI there is an overhead of spawning slaves and loading packages in the slaves (which,
in our case, takes about half a minute to a minute).

. When using two nodes (i.e., almost doubling the number of cores), MPI might, or might

not, be faster than using forking on a single node. Two main issues affect the speed
differences: inter-process communication and access to files. In our case, the likely
bottleneck lies in access to files, which live on a SAS disk which is accessed via NFS.
With other hardware/software configurations, access to shared files might be much
faster. Regardless, the MPI costs might not be worth if each individual calculation is
fast; this is why MPI with HaarSeg does not pay off, but it does pay off with CBS.

. When using ff, the exact same operations in systems with different RAM can lead to

different amounts of memory usage, as ff tries autotuning when starting. You can tune
parameters when you load the ff package, but even if you don’t (and, by default, we
don’t), defaults are often sensible and will play in your favor.

. Even for relatively small examples, using ff' can be faster than using RAM objects. Us-

ing RAM objects incurs overheads of loading and saving the RData objects in memory,
but analyses also tend to be slightly slower. The later is somewhat surprising: with
forking and RAM objects, the R object that holds the CGH data is accessed only for
reading, and thus can be shared between all processes. We expected this to be faster
than using ff, because access to disk is several orders of magnitude slower than access
to memory —note that we made sure that memory was not virtual memory mapped
to disk, as we had disabled all swapping. We suspect the main difference lies in bottle-
necks and contention problems that result from accessing data in a single data frame
simultaneously from multiple processes, compared to loading exactly just one column
independently in each process, and/or repeated cache misses.

inputToADaCGH (i.e., transforming a directory of files into ff objects) can be severely
affected, of course, by other processes accessing the disk. More generally, since with
inputToADaCGH several processes can try to access different files at once (we are trying
to parallelize the reading of data), issues such as type of file system, configuration
and type of RAID, amount of free space, etc, can have an effect on all heavy 1/0
operations. For example, when reading a set of 2000 files, the time differences in a set
of benchmarks varied between 9 and 34 minutes. The only difference between the runs
we could find being that in the 34 minute runs, we had added about 60 GB worth of
files after creating/copying the text files, and before reading, and the disk was about
64% full. Note also that, as a general rule, it is better if the newly created ff files
from inputToADaCGH are written to an empty directory, and if the working directory
for segmentation analysis is another empty directory if you are using £f objects.
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8. Reordering data takes time (a lot if you do not use ff objects) and can use a lot of
memory. So it is much better if input data are already ordered (by Chromosome and
Position within Chromosome).
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