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1 Introduction

Progress in molecular high-throughput techniques has led to the opportunity of
simultaneous monitoring of hundreds or thousands of biomolecules in medical
samples, e.g. using microarrays. In the era of personalized medicine, these data
form the basis for the development of prognostic and predictive tests. Because
of the high dimensionality of the data and connected to the multiple testing
problem, the development of molecular tests is sensitive to model overfitting
and performance overestimation. Bioinformatic methods have been developed
to cope with these problems, e.g. the multiple random validation protocol that
was presented in [1].

Cancerclass integrates methods for development and validation of diagnos-
tic tests from high-dimensional molecular data. In the past, simple classifiers
were shown to have a good performance on high-dimensional data compared
to more sophisticated methods [2]. Therefore, the protcol of cancerclass uses
simple classification methods, while much attention is payed to validation and
visualization of classification results. In short, the protocol starts with feature
selection by a filtering step. Then, a predictor is constructed using the nearest-
centroid method. The accuracy of the predictor can be evaluated using training
and test set validation, leave-one-out cross-validation or in a multiple random
validation protocol. Methods for calculation and visualization of continuous
prediction score allow to balance sensitivity and specificity and define a cutoff
value according to clinical requirements.

In the following, the functionality of cancerclass is illustrated using two
sets of cancer gene expression data. A gene expression data set of two types of
leukemia (AML and AML) [3] is delivered with cancerclass. Gene expression
data of breast cancer with good and poor prognosis [4, 5] are obtained from the
ExperimentData package cancerdata.
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2 Multiple random validation protocol

First, the package cancerclass and an example data set are loaded. GOLUB1
is a gene filtered version of gene expression data from 72 leukemia patients [3, 1].

> library(cancerclass)

> data(GOLUB1)

> GOLUB1

ExpressionSet (storageMode: lockedEnvironment)

assayData: 3571 features, 72 samples

element names: exprs

protocolData: none

phenoData

sampleNames: X1 X2 ... X72 (72 total)

varLabels: class sample ... gender (5 total)

varMetadata: labelDescription

featureData

featureNames: AFFX-BioDn-3_at AFFX-BioB-5_st ... M71243_f_at (3571

total)

fvarLabels: symbol description

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: hu6800

Using a protocol similar to [1] we investigate the dependence of classification
accuracy on the number of features (Fig. 1):

> nval <- nvalidate(GOLUB1[1:200, ], ngenes=c(5, 10, 20, 50, 100, 200))

> plot(nval)
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Figure 1: Missclassification rates in dependence of the number of genes.
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The classification task is to distinguish between two types of leukemia, ALL
and AML. Fig. 1 shows the overall classification accuracy, the sensitivity for
prediction of ALL and the sensitivity for prediction of AML. The confidence
interval of the overall classification rate is estimated from 200 random splits in
training and test sets.

In order to reduce the computing time for the generation of the vignette, the
gene expression data set has been reduced to the first 200 genes out of a total
number of 3571 features. Classification rates will improve, when the calculation
is done for the complete data set.

Next, we evaluate the performance of 10-gene predictors on the size of the
training set (Fig. 2):

> val <- validate(GOLUB1[1:200, ], ngenes=10, ntrain="balanced")

> plot(val)
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Figure 2: Missclassification rates for 10-gene predictors in dependence of the
training set size. For each training set size, 200 splits in training and test sets
were randomly drawn. Each training set contains an equal number of ALL and
AML patients.
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3 Predictor construction and validation

Two gene expression data sets of breast cancer are loaded. Both data sets were
generated using the same type of microarrays. VEER is the original data set of
78 breast cancer samples [4]. VIJVER is a larger data set of 295 breast cancer
samples including some of the profiles of the original data set [5]. An indepen-
dent validation set VIJVER2 is obtained by removing the samples of VEER from
VIJVER. A predictor of distance metastasis is fitted using the VEER data and
validated in VIJVER2. Four methods dist = "euclidean", "center", "an-

gle", "cor" are available for calculation of the distance between test samples
and the centroids (see documentation of predict-method).

> library(cancerdata)

> data(VEER)

> data(VIJVER)

> VIJVER2 <- VIJVER[, setdiff(sampleNames(VIJVER), sampleNames(VEER))]

> predictor <- fit(VEER, method="welch.test")

> prediction <- predict(predictor, VIJVER2, positive="DM", dist="cor")

The result of the prediction is a continuous score for each of the breast can-
cer patients. Three methods score = "z", "zeta", "ratio" are avaiable for
calculation of the prediction score (see documentation prediction-class). The
prediction score turns out to be significantly increased for patients that devel-
oped a distance metastasis within 5 years after surgery (Fig. 3). In fact, only
three patients with prediction score zeta > 0.5 developed a distance metastasis.

> plot(prediction, type="histogram", positive="DM", score="zeta")
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Figure 3: Histogram of the prediction score zeta patients that developed a
distance metastasis within the first 5 years (DM) and patients that remained
distance metastasis-free.
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ROC analysis allows to trade off between sensitivity and specificity for the
prediction of distant metastases. In fact, there is a cut off point for the prediction
score yielding a sensitivity above 90% at a specificity of about 50% (Fig. 4).
Confidence intervals of sensitivity and specificity are calculated by the Wilson
procedure. The ROC curve runs significanlty above the diagonal with an area
under the curve (AUC) of 0.74.

> plot(prediction, type="roc", positive="DM", score="zeta")
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Figure 4: ROC curve for the prediction of distance metastases. 95% confindence
intervals for sensitivity (red lines) and specificity (green lines). AUC = area
under the curve.
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Finally, a logistic regression model is fitted to the prediction score. Using
Fig. 5, the probability of developing a distant metastasis within 5 years can be
estimated from the gene expression based prediction score.

> plot(prediction, type="logistic", positive="DM", score="zeta")

Call:

glm(formula = y ~ x, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6610 -0.8354 -0.6052 1.0490 1.8924

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4716 0.1808 -2.608 0.00911 **

x -1.4188 0.2997 -4.734 2.2e-06 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 210.46 on 155 degrees of freedom

Residual deviance: 184.03 on 154 degrees of freedom

AIC: 188.03

Number of Fisher Scoring iterations: 4
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Figure 5: Probability of distance metastasis estimated in a logistic regression
model including 95% confidence interval. Distribution of the patients with an
unfavorable outcome (top track) and distribution of the patients with an favor-
able outcome (bottom track).
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