\name{qpBoundary} \alias{qpBoundary} \title{ Maximum boundary size of the resulting qp-graphs } \description{ Calculates and plots the size of the largest vertex boundary as function of the non-rejection rate. } \usage{ qpBoundary(nrrMatrix, N=NA, threshold.lim=c(0,1), breaks=5, plot=TRUE, qpBoundaryOutput=NULL, density.digits=0, logscale.bdsize=FALSE, titlebd="Maximum boundary size as function of threshold", verbose=FALSE) } \arguments{ \item{nrrMatrix}{matrix of non-rejection rates.} \item{N}{number of observations from where the non-rejection rates were estimated.} \item{threshold.lim}{range of threshold values on the non-rejection rate.} \item{breaks}{either a number of threshold bins or a vector of threshold breakpoints.} \item{plot}{logical; if TRUE makes a plot of the result; if FALSE it does not.} \item{qpBoundaryOutput}{output from a previous call to \code{\link{qpBoundary}}. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.} \item{density.digits}{number of digits in the reported graph densities.} \item{logscale.bdsize}{logical; if TRUE then the scale for the maximum boundary size is logarithmic which is useful when working with more than 1000 variables; FALSE otherwise (default).} \item{titlebd}{main title to be shown in the plot.} \item{verbose}{show progress on calculations.} } \details{ The maximum boundary is calculated as the largest degree among all vertices of a given qp-graph. } \value{ A list with the maximum boundary size and graph density as function of threshold, the threshold on the non-rejection rate that provides a maximum boundary size strictly smaller than the sample size N and the resulting maximum boundary size. } \references{ Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. \emph{J. Mach. Learn. Res.}, 7:2621-2650, 2006. } \author{R. Castelo and A. Roverato} \seealso{ \code{\link{qpHTF}} \code{\link{qpGraphDensity}} } \examples{ require(mvtnorm) nVar <- 50 ## number of variables maxCon <- 5 ## maximum connectivity per variable nObs <- 30 ## number of observations to simulate set.seed(123) A <- qpRndGraph(p=nVar, d=maxCon) Sigma <- qpG2Sigma(A, rho=0.5) X <- rmvnorm(nObs, sigma=as.matrix(Sigma)) ## the higher the q the less complex the qp-graph nrr.estimates <- qpNrr(X, q=1, verbose=FALSE) qpBoundary(nrr.estimates, plot=FALSE) nrr.estimates <- qpNrr(X, q=5, verbose=FALSE) qpBoundary(nrr.estimates, plot=FALSE) } \keyword{models} \keyword{multivariate}