Introduction to VariantAnnotation

Valerie Obenchain

August 28, 2012

Contents
1__Introduction| 1
[2° Variant Call Format (VCF) files| 2
2.1 Import complete files| 2
2.2 Import data subsets| 6
P21 Genomic cOOrdinates] . - « « « « o v v e e e e e 6
222 VCEFfieldd e 7
[2.2.3 Subset on both genomic coordinates and VCF fields| 9
2.3 Adjusting chromosome names| L 10
B Van I onl 10
[4 Amino acid coding changes| 12
[STFT and PolyPhen Databases| 14
[6 Other operations| 15
6.1 Create a SnpMatrix] e 15
6.2 Long form GRanges| 17
6.3 Write out VOE files] oo o e 18
[T_References] 18
8 Session Information| 18

1 Introduction

This vignette outlines a general workflow for annotating and filtering genetic variants using the VariantAn-
notationpackage. Sample data are in VariantCall Format (VCF) and are a subset of chromosome 22 from
1000 Genomes, ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/. VCF is a text
file format that contains meta-information lines, a header line with column names, data lines with informa-
tion about a position in the genome, and optional genotype information on samples for each position. A full
description of the VCF format can be found on the 1000 Genomes page, http://www.1000genomes.org/
wiki/Analysis/Variant’,20Call’,20Format/vcf-variant-call-format-version-41

The sample dataare read in from a VCF file and variants are identified according to region such as coding,
intron, intergenic, spliceSite etc. Amino acid coding changes are computed for the non-synonymous
variants and SIFT and PolyPhen databases provide predictions of how severly the coding changes affect
protein function. The end of the vignette covers other transformations of VCF data such as the creation of
a SnpMatrix or a ‘long form’ GRanges.

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

2 Variant Call Format (VCF) files

2.1 Import complete files
Data are parsed into a VCF object with readvVct.

> library(VariantAnnotation)

> f1 <- system.file("extdata", '"chr22.vcf.gz", package="VariantAnnotation")
> vcf <- readVcf(fl, "hg19")

> vcf

class: VCF

dim: 10376 5

genome: hgl9

exptData(l): header

fixed(4): REF ALT QUAL FILTER

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

rownames (10376) : rs7410291 rs147922003 ... rs144055359
rs114526001

rowData values names(1): paramRangeID
colnames(5): HGO0O096 HGOO097 HGO0099 HGO0100 HGO0101
colData names(1): Samples

Extract the header information stored in the exptData slot

> hdr <- exptData(vcf)[["header"]]
> hdr

class: VCFHeader

samples(5): HGO0096 HGO0097 HGO0099 HGO0100 HGO0101
meta(1l): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

and explore it with the fixed, info and geno accessors. More information on this object can be found
at 7VCFHeader.

> fixed (hdr)

SimpleDataFramelList of length 1
names(1): ALT

> head(info(hdr), 3)

DataFrame with 3 rows and 3 columns

Number Type
<character> <character>
LDAF 1 Float
AVGPOST 1 Float
RSQ 1 Float
Description
<character>

LDAF MLE Allele Frequency Accounting for LD
AVGPOST Average posterior probability from MaCH/Thunder
RSQ Genotype imputation quality from MaCH/Thunder

The GRanges in the rowData slot is created from information in the the CHROM, POS, and ID fields of
the VCF file. Values in the paramRangeID column are meaningful when ranges have been specified in the
the param argument to readVcf. This is discussed further in the Data Subsets section.

> head (rowData(vcf))

GRanges with 6 ranges and 1 elementMetadata col:

segnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

rs7410291 22 [50300078, 50300078] * | <NA>

rs147922003 22 [50300086, 50300086] * | <NA>

rs114143073 22 [50300101, 50300101] x| <NA>

rs141778433 22 [50300113, 50300113] * | <NA>

rs182170314 22 [50300166, 50300166] * | <NA>

rs115145310 22 [50300187, 50300187] * | <NA>

seqlengths:

22
NA

The REF, ALT, QUAL and FILTER fields can be accessed together with fixed accessor or individually
with ref, alt, qual and filt accessors.

> head(fixed(vcf), 3)

GRanges with 3 ranges and 5 elementMetadata cols:

segnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
rs7410291 22 [60300078, 50300078] * | <NA>
rs147922003 22 [50300086, 50300086] * | <NA>
rs114143073 22 [50300101, 50300101] x| <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
rs7410291 A HHHHHS 100 PASS
rs147922003 C HHHHHHH 100 PASS
rs114143073 G HHHHHH 100 PASS
seqlengths:
22
NA

> qual(vcef)[1:3,]

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

rs7410291 22 [60300078, 50300078] * | <NA>
rs147922003 22 [60300086, 50300086] * | <NA>
rs114143073 22 [50300101, 50300101] * | <NA>

QUAL

<numeric>
rs7410291 100
rs147922003 100
rs114143073 100
seqlengths:
22
NA

The ALT column is stored as a DNAStringSetList unless the file is a structural VCF, in which case it is
stored as a CharacterList. Extract ALT from the GRanges and determine the number of elements in the
list.

> alternate <- values(alt(vcf))[["ALT"]]
> alternate

DNAStringSetList of length 10376

> ## number of ALT values per variant
> unique(elementLengths (alternate))

[1] 1
> head(unlist(alternate))

A DNAStringSet instance of length 6

width seq
[1] 1G
[2] 1T
[3] 1A
[4] 1T
(5] 1T
(6] 14

Data from the INFO field is accessed with the info accessor. Look at the heder information related to
the INFO fields

> head(info(hdr), 4)

DataFrame with 4 rows and 3 columns

Number Type
<character> <character>
LDAF 1 Float
AVGPOST 1 Float
RSQ 1 Float
ERATE 1 Float
Description
<character>
LDAF MLE Allele Frequency Accounting for LD
AVGPOST Average posterior probability from MaCH/Thunder
RSQ Genotype imputation quality from MaCH/Thunder
ERATE Per-marker Mutation rate from MaCH/Thunder

and retrieve the first couple of the fields,
> info(vef)[1:3, 2:3]

GRanges with 3 ranges and 2 elementMetadata cols:

segnames ranges strand | LDAF
<Rle> <IRanges> <Rle> | <numeric>
rs7410291 22 [60300078, 50300078] * | 0.3431
rs147922003 22 [50300086, 50300086] * | 0.0091
rs114143073 22 [50300101, 50300101] * | 0.0098
AVGPOST
<numeric>
rs7410291 0.989

rs147922003 0.9963
rs114143073 0.9891
seqlengths:

22

NA

Genotype data described in the FORMAT field are parsed into matrices or arrays and can be accessed with
the geno accessor. These data are not returned with the GRanges from rowData because they are unique
for each sample and the data structures can be multidimensional. This is in contrast to the fixed and info
data which are the same for a each variant across all samples.

Extract the header information for the genotypes.

> geno (hdr)

DataFrame with 3 rows and 3 columns

Number Type Description
<character> <character> <character>

GT 1 String Genotype
DS 1 Float Genotype dosage from MaCH/Thunder
GL . Float Genotype Likelihoods

Elements of the genotype list can be accessed in the usual way.
> geno (vcf)

SimpleList of length 3
names(3): GT DS GL

> geno(vef)$GT[1:3,1:5]

HGO0096 HGO0O097 HGO0099 HGO0100 HGO0101

rs7410291 IIOIOII IIOIOII "1|O" IIOIOII IIOIOII
rs147922003 "0|0O" "ol0" "olo" "olo" "olo"
rs114143073 "0|0O" "0l0" "olo" "olo" "olo"

> geno(vcf)$DS[1:3,1:5]

HGO0096 HGO0O097 HGO0099 HGO0100 HG00101

rs7410291 0 0 1 0 0
rs147922003 0 0 0 0 0
rs114143073 0 0 0 0 0

2.2 Import data subsets

When working with large VCF files it may be more efficient to read in subsets of the data. Data can be
subset by selecting genomic coordinates (ranges) or by selecting fields from the VCF file.

2.2.1 Genomic coordinates

Subset by genomic coordinates by creating a GRanges, RangedData or RangesList. To read in a portion of
chromosome 22, we create a GRanges with the regions of interest.

> rng <- GRanges (seqnames="22",
+ ranges=IRanges (c (560301422, 50989541), c(50312106, 51001328)))
> names(rng) <- c("gene_79087", "gene_644186")

When ranges are specified, the VCF file must have an accompanying Tabix index file; if one does not
exist it must be created. See 7indexTabix for help creating an index.

Once the index exists a TabixFile instance can be created, see ?TabixFile. This object creates a
reference to the VCF and its index. Once opened, the reference remains open across calls to methods, avoiding
costly index re-loading. An index file for our sample data is included in the package so the TabixFile can
be created with,

> tab <- TabixFile(fl)
> tab

class: TabixFile

path: /tmp/RtmpqSTIXv/Rinst6aal4c2ded61/VariantAnnotatio.../chr22.vcf.gz
index: /tmp/RtmpqSTIXv/Rinst6aald4c2ded6l/VariantAnno.../chr22.vcf.gz.tbi
isOpen: FALSE

Call readVcf with TabixFile and the ranges as the param. The dimension of the resulting VCF object
shows 397 records overlaped with the specified ranges.

> vcf_rng <- readVcf(tab, "hgl9", rng)
> vef_rng

class: VCF

dim: 397 5

genome: hgl9

exptData(l): header

fixed(4): REF ALT QUAL FILTER

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): DS GL GT

rownames (397) : rs114335781 rs8135963 ... rs144055359
rs114526001

rowData values names(1): paramRangeID
colnames(5) : HGO0096 HGO0097 HGO0099 HGO0100 HGO0101
colData names(1): Samples

The paramRangesID column now has meaning as it distinguishes which variant records came from which
param range.

> rowData(vcf_rng)

GRanges with 397 ranges and 1 elementMetadata col:

seqnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
rs114335781 22 [50301422, 50301422] * I gene_79087
rs8135963 22 [50301476, 50301476] * | gene_79087
22:50301488 22 [560301488, 50301488] * | gene_79087
22:50301494 22 [60301494, 50301494] * | gene_79087
22:50301584 22 [60301584, 50301584] * | gene_79087
22:50301622 22 [50301622, 50301622] * I gene_79087
rs9627644 22 [50301664, 50301664] * | gene_79087
rs192916413 22 [560301719, 50301719] * | gene_79087
rs149477000 22 [60301774, 50301774] * | gene_79087
rs138542635 22 [50999306, 50999306] * | gene_644186
rs184258531 22 [50999489, 50999489] * | gene_644186
rs9628177 22 [60999490, 50999490] * | gene_644186
rs9628212 22 [60999502, 50999502] * | gene_644186
rs187302552 22 [60999536, 50999536] * | gene_644186
rs9628178 22 [50999538, 50999538] * | gene_644186
rs5770892 22 [50999681, 50999681] * | gene_644186
rs144055359 22 [50999830, 50999830] * | gene_644186
rs114526001 22 [60999964, 50999964] * | gene_644186
seqlengths:
22
NA

2.2.2 VCF fields

Data can also be subset on the fixed, info and/or geno fields in the VCF file. Fields available for import are
described in the header information. To view the header before reading in the data in use ScanVcfHeader.

> hdr <- scanVcfHeader (f1)
> hdr

class: VCFHeader

samples(5): HGO0096 HGO0097 HGO0099 HGO0100 HGO0101
meta(1l): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

The info and geno accessors return DataFrames containing descriptions of the fields, data type and
number of values. A listing of all possible info or geno values is constructed by selecting the rownames of
the DataFrames.

> ## INFO fields
> info_DF <- info(hdr)
> rownames (info_DF)

[1] "LDAF" "AVGPOST" "RSQ" "ERATE" "THETA"
[6] "CIEND" "CIPOS" "END" "HOMLEN" "HOMSEQ"
[1 1] n SVLENI’] SVTYPEII IIACII IIANII IIAAII

[16] "AF" "AMR_AF" "ASN_AF" "AFR_AF" "EUR_AF"
[21] "vT" "SNPSOURCE"

> ## FORMAT fields
> geno_DF <- geno (hdr)
> rownames (geno_DF)

[1] |IGTII lIDSlI IIGLII

We are interested in "LDAF” in INFO which is ’allele frequency accounting for linkage disequlibrium’,
and "GT” in FORMAT which is 'genotype’. Full descriptions of the elements can be seen in the header INFO
and FORMAT DataFrames.

> info_DF[rownames (info_DF) == "LDAF",]

DataFrame with 1 row and 3 columns

Number Type Description

<character> <character> <character>

LDAF 1 Float MLE Allele Frequency Accounting for LD
> geno_DF[rownames (geno_DF) == "GT",]

DataFrame with 1 row and 3 columns

Number Type Description
<character> <character> <character>
GT 1 String Genotype

To subset on "LDAF” and "GT” we specify them as character vectors in the info and geno arguments
to ScanVcfParam. This creates a ScanVcfParam object which is used as the param argument to readvVct.

> ## Return "ALT" from 'fixed', "LAF" from 'info' and "GT" from 'geno'
> svp <- ScanVcfParam(fixed="ALT", info="LDAF", geno="GT")

> ## Return all 'fixed' fields, "LAF" from 'info' and "GT" from 'geno'
> svp <- ScanVcfParam(info="LDAF", geno="GT")

> svp

class: ScanVcfParam
vcfWhich: O elements
vcfFixed: character() [All]
vcfInfo: LDAF

vcfGeno: GT

Note that subsetting by the VCF fields does not affect the number of ranges read in. Instead the results
of the filtering are reflected in the names of the elements returned from the info and geno accessors.

> vcf_flds <- readVcf(fl, "hgl9", svp)
> geno(vcf_flds)

SimplelList of length 1
names(1): GT

> head(info(vcf_flds), 3)

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
rs7410291 22 [50300078, 50300078] * | <NA>
rs147922003 22 [50300086, 50300086] * | <NA>
rs114143073 22 [60300101, 50300101] * | <NA>
LDAF
<numeric>

rs7410291 0.3431
rs147922003 0.0091
rs114143073 0.0098
seqlengths:

22
NA

In the previous section we saw that a Tabix index file must exist when data are subset by genomic
coordinates (i.e., ranges). This is not the case when subsetting on INFO and FORMAT elements. An index
file is only needed when subsetting by ranges.

2.2.3 Subset on both genomic coordinates and VCF fields

To subset on both genomic coordinates and INFO and FORMAT fields the ScanVcfParam object must contain
both. Our previous ScanVcfParam did not have ranges associated with it so we create a new instance with
the ranges and INFO and FORMAT fields.

> svp_all <- ScanVcfParam(info="LDAF", geno="GT", which=rng)
> svp_all

class: ScanVcfParam
vcfWhich: 1 elements
vcfFixed: character() [All]
vcfInfo: LDAF

vcfGeno: GT

The subsetting here involves genomic coordinates so we need to use the Tabix index file we created.
> readVcf(tab, "hgl9", svp_all)

class: VCF

dim: 397 5

genome: hgl9

exptData(l): header

fixed(4): REF ALT QUAL FILTER

info(1): LDAF

geno(1): GT

rownames(397): rs114335781 rs8135963 ... rs144055359
rs114526001

rowData values names(1): paramRangeID

colnames(5): HGO0O096 HGO0O097 HGO0099 HGO0100 HGO0101

colData names(1): Samples

2.3 Adjusting chromosome names

When functions involve the comparision of ranges by overlaps. For overlap methods to work properly the
chromosome names (seqlevels) must be compatible.
The VCF data chromosome names are represented by number, i.e. '22’,

> rowdat <- rowData(vcf)
> seqlevels(rowdat)

[1] noon
but the TxDb chromosome names are preceded with 'chr’.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
> head(seqlevels (txdb))

[1] "chri" "chr2" "chr3" "chr4" "chr5" "chr6"

Chromosome names can be modified with the renameSeqlevels function. Seqlevels are modified at the
GRanges level in the rowData slot of the VCF which means all future data extractions from this VCF will have
the new seqlevels. If the data are read in from the file again, however, the seqlevels will need to be adjusted
again. See ?VCF and ?renameSeqlevels for examples with VCF and GRanges objects.

rename variant seqlevels in the VCF object
vcf <- renameSeqlevels(vcf, c("22"="chr22"))
extract the rowData with modified seqlevels
rd <- rowData(vcf)

confirm seqlevels are the same

intersect (seqlevels(rd), seqlevels(txdb))

V V.V Vv \VvyVv

[1] "chr22"

To subset a VCF or GRanges by chromosome use keepSeqlevels. As an example we extract transcripts
for all chromosomes in TxDb.Hsapiens.UCSC.hg19.knownGene then keep only ’chr21’” and ’chr22’. See ?VCF
and TkeepSeqlevels for details.

initially there are 93 chromosomes

> rngs <- transcripts(txdb)

> length(seqlevels(rngs))

[1] 93

keep only chr2l and chr22

> rngs <- keepSeqlevels(rngs, c("chr21", "chr22"))
> seqlevels(rngs)

[1] "chr2i" "chr22"

3 Variant location

locateVariants identifies where the ranges in query fall with respect to the annotation supplied in subject.
Regions are specified in the region argument and can be one of the following constructors: CodingVariants,
IntronVariants, FiveUTRVariants, ThreeUTRVariants, IntergenicVariants, or SpliceSiteVariants. Location
definitions are shown in Table [Il

When the query is a VCF the variant ranges are taken from the rowData slot. If query is a GRanges it
can have additional elementMetadata columns but they are ignored. As an alternative to a TranscriptDb,

10

Location Details

coding falls within a coding region

fiveUTR falls within a 5’ untranslated region

threeUTR | falls within a 3’ untranslated region

intron falls within an intron region

intergenic | does not fall within a transcript associated with a gene

spliceSite | overlaps any portion of the first 2 or last 2 nucleotides of an intron

Table 1: Variant locations

the subject can be a GRangesList of the appropriate type. CodingVariants would require coding regions
by transcript, for IntronVariants introns by transcripts would be necessary, etc. See ?locateVariants
man page for details.

Identify the coding variants,

> loc <- locateVariants(rd, txdb, CodingVariants())
> head(loc, 4)

GRanges with 4 ranges and 5 elementMetadata cols:

seqnames ranges strand | location queryID
<Rle> <IRanges> <Rle> | <factor> <integer>
rs114335781 chr22 [50301422, 50301422] * | coding 24
rs8135963 chr22 [50301476, 50301476] x| coding 25
22:50301488 chr22 [50301488, 50301488] * | coding 26
22:50301494 chr22 [50301494, 50301494] * | coding 27
txID cdsID genelD
<integer> <integer> <character>
rs114335781 76833 225251 79087
rs8135963 76833 2256251 79087
22:50301488 76833 225251 79087
22:50301494 76833 225251 79087
seqlengths:
chr22
NA

SpliceSiteVariants are those overlapping the first 2 or last 2 nucleotides of an intron.

> head(locateVariants(rd, txdb, SpliceSiteVariants()), 4)

GRanges with 4 ranges and 5 elementMetadata cols:

seqnames ranges strand | location
<Rle> <IRanges> <Rle> | <factor>
rs35683648 chr22 [50754200, 50754202] * | spliceSite
rs140524 chr22 [50960682, 50960682] * | spliceSite
rs140524 chr22 [50960682, 50960682] * | spliceSite
rs140524 chr22 [50960682, 50960682] * | spliceSite
queryID txID cdsID genelD
<integer> <integer> <integer> <character>
rs35683648 6618 76889 <NA> 414918
rs140524 9740 76909 <NA> 29781

11

rs140524 9740 76910 <NA> 29781
rs140524 9740 76911 <NA> 29781
seqlengths:
chr22
NA

To locate variants in all regions use the Al1lVariants() constructor,
> allvar <- locateVariants(rd, txdb, AllVariants())

The GRanges output of locateVariants includes only the ranges that fell in the specified region. Each
row is a variant-transcript match which may result in multiple rows for each variant. elementMetadata
columns returned include location, queryID, txID, cdsID, and geneID. In the case of IntergenicVariants
columns for precedesID and followsID are also included. The queryID column maps back to the row
number in the original query.

To answer gene-centric questions data can be summarized by gene reguardless of transcript.

> ## Did any coding variants match more than one gene?
> table(sapply(split(values(loc) [["geneID"]], values(loc)[["queryID"]]),

+ function(x) length(unique(x)) > 1))
FALSE TRUE
956 15

> ## Summarize the number of coding variants by gene ID
> idx <- sapply(split(values(loc)[["queryID"]], values(loc)[["geneID"]]), unique)
> sapply(idx, length)

113730 1890 23209 23654 29781 400935 414918 415116 440836 54456

22 15 30 87 44 15 33 11 5 82
5565686 5600 56666 6300 6305 644186 79087 79174 79924 80305

24 16 19 38 56 5 25 50 4 26
83642 83933 85378 91289 9701 9997

55 50 147 29 68 15

4 Amino acid coding changes

predictCoding computes amino acid coding changes for non-synonymous variants. Only ranges in query
that overlap with a coding region in the subject are considered. Reference sequences are retrieved from
either a BSgenome or fasta file specified in seqSource. Variant sequences are constructed by substituting,
inserting or deleting values in the varAllele column into the reference sequence. Amino acid codes are
computed for the variant codon sequence when the length is a multiple of 3. Examples of coding situations
are shown in Table 21

The query argument to predictCoding can be a GRanges or VCF. When a GRanges is supplied the
varAllele argument must be specified. In the case of a VCF, the alternate alleles are taken from values (alt (<VCF>)) [["ALT"]]
and the varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding regions. Each row repre-
sents a variant-transcript match so more than one row per original variant is possible.

> library(BSgenome.Hsapiens.UCSC.hg19)
> coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)
> coding[5:9]

12

Type refAllele varAllele | refCodon | varCodon | translation possible
substitution | G T aag aaT yes
substitution | G TG tga tTGa no
substitution | G TGCG gtc TGCGtc yes
insertion ¢ G cgg Gegg no
insertion ¢ TTG gaa gaTTGa yes
deletion A ¢ atc tc no
deletion GGCCTA | ¥ acggcctaa | aca yes
Table 2: Amino acid coding
GRanges with 5 ranges and 13 elementMetadata cols:
segnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
22:50301584 chr22 [50301584, 50301584] - <NA>
rs114264124 chr22 [50302962, 50302962] - <NA>
rs149209714 chr22 [50302995, 50302995] - <NA>
22:50303554 chr22 [50303554, 50303554] - <NA>
rs12167668 chr22 [50303561, 50303561] - <NA>
varAllele cdsLoc proteinloc
<DNAStringSet> <IRanges> <CompressedIntegerList>
22:50301584 A (777, T77] 259
rs114264124 A [698, 698] 233
rs149209714 C [665, 665] 222
22:50303554 G [652, 652] 218
rs12167668 A [645, 645] 215
queryID txID cdsID geneID consequence
<integer> <character> <integer> <character> <factor>
22:50301584 28 76833 2256251 79087 synonymous
rs114264124 57 76833 225252 79087 nonsynonymous
rs149209714 58 76833 225252 79087 nonsynonymous
22:50303554 73 76833 225253 79087 nonsynonymous
rs12167668 74 76833 225253 79087 synonymous
refCodon varCodon refAA varAA
<DNAStringSet> <DNAStringSet> <AAStringSet> <AAStringSet>
22:50301584 CCG CCA P P
rs114264124 CGG CAG R Q
rs149209714 GGA GCA G A
22:50303554 ATC GTC I v
rs12167668 CCG CCA P P
seqlengths:
chr22
NA

Using variant rs114264124 as an example, we see varAllele A has been substituted into the refCodon
CGG to produce varCodon CAG. The refCodon is the sequence of codons necessary to make the variant allele
substitution and therefore often includes more nucleotides than indicated in the range (i.e. the range is
50302962, 50302962, width of 1). Notice it is the second position in the refCodon that has been substituted.
This position in the codon, the position of substitution, corresponds to genomic position 50302962. This

13

genomic position maps to position 698 in coding region-based coordinates and to triplet 233 in the protein.
This is a non-synonymous coding variant where the amino acid has changed from R (Arg) to Q (Gln).

When the resulting varCodon is not a multiple of 3 it cannot be translated. The consequence is considered
a frameshift and varAA will be missing.

> ## consequence is 'frameshift' where translation is not possible
> coding[values(coding) [["consequence"]] == "frameshift"]

GRanges with 1 range and 13 elementMetadata cols:

segnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
22:50317001 chr22 [50317001, 50317001] + | <NA>
varAllele cdsLoc proteinloc
<DNAStringSet> <IRanges> <CompressedIntegerList>
22:50317001 GCACT [808, 808] 270
queryID txID cdsID geneID consequence
<integer> <character> <integer> <character> <factor>
22:50317001 359 76834 225263 79174 frameshift
refCodon varCodon refAA varAA
<DNAStringSet> <DNAStringSet> <AAStringSet> <AAStringSet>
22:50317001 GCC ACC A
seqlengths:
chr22
NA

5 SIFT and PolyPhen Databases

From predictCoding we identified the amino acid coding changes for the non-synonymous variants. For this
subset we can retrieve predictions of how damaging these coding changes may be. SIFT (Sorting Intolerant
From Tolerant) and PolyPhen (Polymorphism Phenotyping) are methods that predict the impact of amino
acid substitution on a human protein. The SIF'T method uses sequence homology and the physical properties
of amino acids to make predictions about protein function. PolyPhen uses sequence-based features and
structural information characterizing the substitution to make predictions about the structure and function
of the protein.

Collated predictions for specific dbSNP builds are available as downloads from the SIFT and PolyPhen
web sites. These results have been packaged into SIFT. Hsapiens.dbSNP132.db and PolyPhen.Hapiens.dbSNP131.db
and are designed to be searched by rsid. Variants that are in dbSNP can be searched with these database
packages. When working with novel variants, SIF'T and PolyPhen must be called directly. See references for
home pages.

Identify the non-synonymous variants and obtain the rsids.

nms <- names (coding)

idx <- values(coding) [["consequence"]] == "nonsynonymous"

nonsyn <- coding[idx]

names (nonsyn) <- nms[idx]

rsids <- unique (names (nonsyn) [grep("rs", names(nonsyn), fixed=TRUE)])

vV V. Vv Vv Vv

Detailed descriptions of the database columns can be found with ?SIFTDbColumns and ?PolyPhenDbColumns.
Variants in these databases often contain more than one row per variant. The variant may have been reported
by multiple sources and therefore the source will differ as well as some of the other variables.

14

> library(SIFT.Hsapiens.dbSNP132)
> ## rsids in the package
> head(keys (SIFT.Hsapiens.dbSNP132))

[1] "rs10000692" "rs10001580" "rs10002700" "rs10003238" "rs10003369"
[6] "rs10004"

> ## list available columns
> cols(SIFT.Hsapiens.dbSNP132)

[1] "RSID" "PROTEINID" "AACHANGE" "METHOD"
[5] "AA" "PREDICTION" "SCORE" "MEDIAN"
[9] "POSTIONSEQS" "TOTALSEQS"

select a subset of columns

a warning is thrown when a key is not found in the database
subst <- c("RSID", "PREDICTION", "SCORE", "AACHANGE", "PROTEINID")
sift <- select(SIFT.Hsapiens.dbSNP132, keys=rsids, cols=subst)
head (sift)

vV V. Vv VvV

RSID PROTEINID AACHANGE PREDICTION SCORE
rs114264124 NP_077010 R233Q TOLERATED 0.59
rs114264124 NP_077010 R233Q TOLERATED 1.00
rs114264124 NP_077010 R233Q TOLERATED 0.20
rs149209714 <NA> <NA> <NA> <NA>
rs144665682 <NA> <NA> <NA> <NA>
rs117687848 NP_077010 R120Q TOLERATED 0.20

O WN -

Next we query the PolyPhen database for information on these variants. PolyPhen provides predictions
using two different training datasets and has considerable information about 3D protein structure. See
?PolyPhenDbColumns or the PolyPhen web site listed in the references for more details.

Query the PolyPhen database with the rsids found in SIFT,

> library(PolyPhen.Hsapiens.dbSNP131)
> inSIFT <- unique(sift$RSID[!is.na(sift$PREDICTION)])
> pp <- select(PolyPhen.Hsapiens.dbSNP131, keys=inSIFT,
+ cols=c ("TRAININGSET", "PREDICTION", "PPH2PROB"))
> head(pp[!is.na(pp$PREDICTION), 1)
RSID TRAININGSET PREDICTION PPH2PROB
4 1rs8139422 humdiv possibly damaging 0.228
5 1rs8139422 humvar possibly damaging 0.249
6 rs74510325 humdiv possibly damaging 0.475
7 rs74510325 humvar possibly damaging 0.335
8 rs73891177 humdiv benign 0.001
9 rs73891177 humvar benign 0.005

6 Other operations

6.1 Create a SnpMatrix

The 'GT’ element in the FORMAT field of the VCF represents the genotype. These data can be converted
into a snpMatrix object which can then be used with the functions offered in snpStats and other packages
making use of the SnpMatrix class.

15

The MatrixToSnpMatrix function converts the genotype calls in geno to a SnpMatrix. No dbSNP package
is used in this computation. The return value is a named list where ’genotypes’ is a SnpMatrix and 'map’ is
a DataFrame with SNP names and alleles at each loci. The ignore column in 'map’ indicates which variants
were set to NA (missing) because they met one or more of the following criteria,

e only diploid calls are included; others are set to NA
e only single nucleotide variants are included; others are set to NA

e variants with >1 ALT allele are set to NA

See MatrixToSnpMatrix for more details.

> calls <- geno(vcf)$GT
> a0 <- values(ref(vcf)) [["REF"]]
> al <- values(alt(vcf))[["ALT"]]
> res <- MatrixToSnpMatrix(calls, a0, al)
> res
$genotypes
A SnpMatrix with 5 rows and 10376 columns
Row names: HGO0096 ... HG00101
Col names: rs7410291 ... rs114526001
$map
DataFrame with 10376 rows and 4 columns
snp.names allele.1 allele.2 ignore

<character> <DNAStringSet> <DNAStringSetList> <logical>
1 rs7410291 A HHH I FALSE
2 rs147922003 C HHHH AR FALSE
3 rs114143073 G HHHH AR FALSE
4 rs141778433 C HHHHHHH FALSE
5 rs182170314 C HHHHHHEH FALSE
6 rs115145310 G i FALSE
7 rs186769856 T HHHH IR FALSE
8 rs77627744 G HHHH AR FALSE
9 rs193230365 G HHHHHHH FALSE
10368 rs138542635 G i FALSE
10369 rs184258531 C HHH I FALSE
10370 rs9628177 G HHHH#HAHH FALSE
10371 rs9628212 G HHHHHAHHH FALSE
10372 rs187302552 A HHHHHHH FALSE
10373 rs9628178 A HIHHHHE FALSE
10374 rs5770892 A HHH AR FALSE
10375 rs144055359 G HHHH AR FALSE
10376 rs114526001 G HHHH AR FALSE

The ALT value in the 'map’ DataFrame will be a CharacterList if the VCF was for structural variants or
a DNAStringSetList otherwise. The column is not clearly visable inside the DataFrame but can be extracted
and inspected as follows,

> allele2 <- res$map[["allele.2"]]
> ## number of alternate alleles per variant
> unique (elementLengths(allele2))

16

[1] 1
> unlist(allele2)

A DNAStringSet instance of length 10376

width seq
[1] 1G
[2] 1T
[3] 1A
[4] 1T
[5] 1T
(6] 14
(7] 1C
(8] 1A
[9] 1A
[10368] 1A
[10369] 1T
[10370] 1A
[10371] 1A
[10372] 1G
[10373] 1G
[10374] 1G
[10375] 1A
[10376] 1C

6.2 Long form GRanges

The readVcfLongForm function reads data from a VCEF file in the same manner as readVcf but outputs
a long form GRanges instead of a VCF class. This format is driven by the fact that the alternate allele
(ALT) in the VCF file often has more than one value per record. In the long form GRanges, the rows of the
GRanges are replicated to match the length of the ‘unlisted’ alternate allele. This format provides access to
each possible REF, ALT pair for each variant.

Input arguments and data subsetting is the same for readVcfLongForm as for readVcf. The fixed and
info fields are included as elementMetadata columns. Currently no geno information is included.

info information was previously collected from the file header. We import ‘HOMSEQ’ and ‘ALT".

> rownames (info_DF)

[1] "LDAF" "AVGPOST" "RSQ" "ERATE" "THETA"
[6] "CIEND" "CIPOS" "END" "HOMLEN" "HOMSEQ"
[11] "SVLEN" "SYTYPE" "ACH "AN™ "AAM
[16] "AF" "AMR_AF" "ASN_AF" "AFR_AF" "EUR_AF"
[21] "VT" "SNPSOURCE"

> param <- ScanVcfParam(fixed="ALT", info="HOMSEQ")
> gr <- readVcfLongForm(f1l, "hgl9", param)

> head(gr)
GRanges with 6 ranges and 5 elementMetadata cols:
seqnames ranges strand | paramRangeID ID
<Rle> <IRanges> <Rle> | <factor> <character>
[1] 22 [50300078, 50300078] * | <NA> rs7410291

17

[2] 22 [60300086, 50300086] * | <NA> rs147922003

[3] 22 [60300101, 50300101] * | <NA> rs114143073

[4] 22 [50300113, 50300113] x| <NA> rs141778433

(5] 22 [50300166, 50300166] * | <NA> rs182170314

(6] 22 [50300187, 50300187] * | <NA> rs115145310

REF ALT HOMSEQ

<DNAStringSet> <DNAStringSet> <CompressedCharacterList>

[1] A G NA

(2] C T NA

(3] G A NA

[4] C T NA

(5] C T NA

(6] G A NA

seqlengths:

22

NA

6.3 Write out VCF files

A VCF file can be written out from data stored in a VCF class. Methods to write out from more general
structures are in progress.

fl <- system.file("extdata", "ex2.vcf", package="VariantAnnotation")
outl.vcf <- tempfile()

out2.vcf <- tempfile()

inl <- readVcf(fl, "hgl9")

writeVcf(inl, outl.vcf)

in2 <- readVcf (outl.vcf, "hgl9")

writeVcf (in2, out2.vcf)

in3 <- readVcf (out2.vcf, "hgl9")

identical(in2, in3)

VVVVVVVYVYV

[1] TRUE

7 References

Wang K, Li M, Hakonarson H, (2010), ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Research, Vol 38, No. 16, e164.

McLaren W, Pritchard B, RiosD, et. al., (2010), Deriving the consequences of genomic variants with the
Ensembl API and SNP Effect Predictor. Bioinformatics, Vol. 26, No. 16, 2069-2070.

SIFT home page : http://sift.bii.a-star.edu.sg/

PolyPhen home page : http://genetics.bwh.harvard.edu/pph2/

8 Session Information

R version 2.15.1 (2012-06-22)
Platform: x86_64-unknown-linux-gnu (64-bit)

18

http://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] PolyPhen.Hsapiens.dbSNP131_1.0.2
[2] SIFT.Hsapiens.dbSNP132_1.0.2
[3] RSQLite_0.11.1
[4] DBI_0.2-5
[5] BSgenome.Hsapiens.UCSC.hgl19_1.3.17
[6] BSgenome_1.24.0
[7] TxDb.Hsapiens.UCSC.hgl9.knownGene_2.7.1
[8] GenomicFeatures_1.8.3
[9] AnnotationDbi_1.18.1

[10] Biobase_2.16.0

[11] VariantAnnotation_1.2.11

[12] Rsamtools_1.8.6

[13] Biostrings_2.24.1

[14] GenomicRanges_1.8.13

[15] IRanges_1.14.4

[16] BiocGenerics_0.2.0

loaded via a namespace (and not attached):

[1] Matrix_1.0-6 RCurl_1.91-1 XML_3.9-4

[4] biomaRt_2.12.0 bitops_1.0-4.1 grid_2.15.1

[7] lattice_0.20-10 rtracklayer_1.16.3 snpStats_1.6.0
[10] splines_2.15.1 stats4_2.15.1 survival_2.36-14
[13] tools_2.15.1 zlibbioc_1.2.0

19

	Introduction
	Variant Call Format (VCF) files
	Import complete files
	Import data subsets
	Genomic coordinates
	VCF fields
	Subset on both genomic coordinates and VCF fields

	Adjusting chromosome names

	Variant location
	Amino acid coding changes
	SIFT and PolyPhen Databases
	Other operations
	Create a SnpMatrix
	Long form GRanges
	Write out VCF files

	References
	Session Information

