\name{tnetpost} \alias{tnetpost} \title{Ternary Network Posterior Sampling} \description{ This function samples from the posterior density of a ternary network based on perturbation experiments. } \usage{ tnetpost(tfit, mdelta=as.integer(2000), msample=as.integer(2000), temperatureScale=1.0, xSeed=NA) } \arguments{ \item{tfit}{a ternaryFit object} \item{mdelta}{number of transitions between samples} \item{msample}{number of samples} \item{temperatureScale}{the final temperature is multipled by this value for sampling} \item{xSeed}{an integer random seed. If NA, a random seed is generated.} } \value{ The function returns a ternaryPost object. } \author{Matthew N. McCall and Anthony Almudevar} \seealso{ Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47. } \examples{ ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3) pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3) rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3") tnfitObj <- tnetfit(ssObj, pObj) tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10) } \keyword{manip}