\name{test.hetero.est} \alias{test.hetero.est} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Function to test the heterogeneity of set of probabilities } \description{ The function tests whether a set of p-values are heterogeneous. } \usage{ test.hetero.est(x, x.se, na.rm = FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ vector of estimates } \item{x.se}{ vector of standard errors of the corresponding estimates } \item{na.rm}{ \code{TRUE} if the missing values should be removed from the data, \code{FALSE} otherwise } } \details{ The heterogeneity test is known to be very conservative. Consider a p-value < 0.1 as significant. } \value{ \item{Q}{ Q statistic } \item{p.value}{ p-value of the heterogeneity test} } \references{ Cochrane, W. G. (1954) "The combination of estimates from different experiments", \emph{Biometrics}, \bold{10}, pages 101--129. } \author{ Benjamin Haibe-Kains } %\note{} \seealso{ \code{combine.test} } \examples{ set.seed(12345) x1 <- rnorm(100, 50, 10) + rnorm(100, 0, 2) m1 <- mean(x1) se1 <- sqrt(var(x1)) x2 <- rnorm(100, 75, 15) + rnorm(100, 0, 5) m2 <- mean(x2) se2 <- sqrt(var(x2)) test.hetero.est(x=c(m1, m2), x.se=c(se1, se2)) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ htest }