\name{fisherz} \alias{fisherz} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Function to compute Fisher z transformation } \description{ The function computes the Fisher z transformation useful to calculate the confidence interval of Pearson's correlation coefficient. } \usage{ fisherz(x, inv = FALSE, eps = 1e-16) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ value, e.g. Pearson's correlation coefficient } \item{inv}{ \code{TRUE} for inverse Fisher z transformation, \code{FALSE} otherwise } \item{eps}{ tolerance for extreme cases, i.e. \deqn{latex}{|x| \approx 1} when inv = \code{FALSE} and \deqn{latex}{|x| \approx Inf} when inv = \code{TRUE} } } \details{ The sampling distribution of Pearson's \eqn{latex}{\rho} is not normally distributed. R. A. Fisher developed a transformation now called \dQuote{Fisher's z transformation} that converts Pearson's \eqn{latex}{\rho} to the normally distributed variable z. The formula for the transformation is \deqn{latex}{z = 1 / 2 [ \log(1 + \rho) - \log(1 - \rho) ]} Two attributes of the distribution of the z statistic: (1) It is normally distributed and (2) it has a known standard error of \deqn{latex}{\sigma_z = 1 / \sqrt{N - 3}} where \eqn{latex}{N} is the number of samples. Fisher's z is used for computing confidence intervals on Pearson's correlation and for confidence intervals on the difference between correlations. } \value{ Fisher's z statistic } \references{ R. A. Fisher (1915) "Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population". \emph{Biometrika}, \bold{10},pages 507--521. } \author{ Benjamin Haibe-Kains } %\note{} \seealso{ \code{\link[stats]{cor}} } \examples{ set.seed(12345) x1 <- rnorm(100, 50, 10) x2 <- runif(100,.5,2) cc <- cor(x1, x2) z <- fisherz(x=cc, inv=FALSE) z.se <- 1 / sqrt(100 - 3) fisherz(z, inv=TRUE) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ univar }