\name{combine.test} \alias{combine.test} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Function to combine probabilities } \description{ The function combines several p-value estimated from the same null hypothesis in different studies involving independent data. } \usage{ combine.test(p, weight, method = c("fisher", "z.transform", "logit"), hetero = FALSE, na.rm = FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{p}{ vector of p-values } \item{weight}{ vector of weights (e.g. sample size of each study) } \item{method}{ \code{fisher} for the Fisher's combined probability test, \code{z.transform} for the Z-transformed test, \code{logit} for the weighted Z-method } \item{hetero}{ \code{TRUE} is the heterogeneity should be taken into account, \code{FALSE} otherwise } \item{na.rm}{ \code{TRUE} if the missing values should be removed from the data, \code{FALSE} otherwise } } \details{ The p-values must be one-sided and computed from the same null hypothesis. } \value{ p-value } \references{ Whitlock, M. C. (2005) "Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach", \emph{J. Evol. Biol.}, \bold{18}, pages 1368--1373. } \author{ Benjamin Haibe-Kains } %\note{} \seealso{ \code{test.hetero.test} } \examples{ p <- c(0.01, 0.13, 0.07, 0.2) w <- c(100, 50, 200, 30) #with equal weights combine.test(p=p, method="z.transform") #with p-values weighted by the sample size of the studies combine.test(p=p, weight=w, method="z.transform") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ univar }