\name{Step.pred} \alias{Step.pred} \title{ A function to calculate the RS for the test set and decide which samples should be classified with molecular data. } \description{ This function needs the output from the "Curve.generator" and the percentage of samples allows to classify with molecular data. Based on the specified percentage, it finds the RS threshold. Compare a test sample's RS with this threshold, decide whether a test samples should be classified with molecular data or not. } \usage{ Step.pred(curve, test.cli, percent) } \arguments{ \item{curve}{ A list obejct generated by the "Curve.generator" function. } \item{test.cli}{ A data frame or matrix containing the clinical variables of the test set, where columns correspond to samples and rows to features. } \item{percent}{ percentage of samples allow to classify with molecular data } } \value{ \item{Pred}{predicted class labels of the test set} \item{RS}{If the "type" set to "rank" ("proximity") was used in generating the "curve" object, then RS will be a vector of RS calculated from the ranking (proximity) approach , otherwise RS will be a matrix of RS, with two columns and size of rows equal number of test samples, calculated using the both approaches.} \item{Threshold}{a RS which corresponding to the specified re-classification percentage.} \item{Pass}{a vector of binary values. 1 means samples's RS higher than the threshold, so classify it with molecular data is more beneficial and vice versa.} } \author{ Askar Obulkasim Maintainer: Askar Obulkasim } \examples{ data(CNS) tr.cli <- t(CNS$cli[1:40, ]) te.cli <- t(CNS$cli[41:60, ]) tr.gen <- CNS$mrna[, 1:40] te.gen <- CNS$mrna[, 41:60] tr.label <- CNS$class[1:40] te.label <- CNS$class[41:60] curve <- Curve.generator(train.cli=tr.cli, train.gen=tr.gen, train.label=tr.label, test.cli=te.cli, test.gen=te.gen, test.label=te.label, type = c("RF", "GLM_L1"), RStype = "rank", Parallel = FALSE, CVtype = "k-fold", outerkfold = 2, innerkfold = 2, N = 2, plot.it = FALSE) A <- Step.pred(curve, te.cli, 30) }