\name{SPADE.markerMedians} \alias{SPADE.markerMedians} \alias{SPADE.annotateMarkers} \title{ Compute marker medians, coefficient of variations and counts for clusters } \description{ Compute the marker medians, coefficients of variation and observations counts for cluster annoated FCS files. } \usage{ SPADE.markerMedians(files, num.clusters, cols = NULL, arcsinh_cofactor = 5, cluster_cols=NULL, comp=TRUE) SPADE.annotateMarkers(files, cols = NULL, arcsinh_cofactor = 5) } \arguments{ \item{files}{ Name of input FCS file or vector of input FCS file names. FCS files must have "cluster" column. } \item{num.clusters}{ Number of clusters. Note not all clusters need to be present in all files. } \item{cols}{ Usually a vector of strings specifying the columns to be used in the density calculation, e.g., c("(Cd110)D","(Cs111)D"). Strings will be matched against the parameter names extracted from the FCS file. The default=NULL will use all parameters. } \item{arcsinh_cofactor}{ Cofactor used in the arcsinh transform \code{asinh(data/arcsinh_cofactor)} of data } \item{cluster_cols}{ A vector of strings specifying columns that should be marked as having been used in clustering } \item{comp}{ Apply compensation matrix if present in SPILL or SPILLOVER keywords } } \details{ SPADE.annotateMarkers is deprecated. } \value{ List with: \item{count}{Matrix of observation count for clusters} \item{percenttotal}{Matrix of percent of total number of cells [0-100] in each cluster} \item{medians}{Matrix of medians for specified columns} \item{cvs}{Matrix of coefficient of variation (CV), 100*sd(data)/abs(mean(data)), for specified columns} } \author{ Michael Linderman } \seealso{ \code{\link{SPADE.addClusterToFCS}}, \code{\link{SPADE.annotateGraph}} } \examples{ # Not run ## Load two-parameters sample data included in package #data_file_path = paste(installed.packages()["spade","LibPath"],"spade","extdata","SimulatedRawData.fcs",sep=.Platform$file.sep) ## Run basic SPADE analyses, clustering on two parameters. #output_dir <- tempdir() #SPADE.driver(data_file_path, out_dir=output_dir, cluster_cols=c("marker1","marker2")) ## Compute medians, counts and other parameters from processed files #upsampled_file_path <- paste(output_dir,.Platform$file.sep,basename(data_file_path),".density.fcs.cluster.fcs",sep="") #mst_graph <- igraph:::read.graph(paste(output_dir,"mst.gml",sep=.Platform$file.sep),format="gml") #anno <- SPADE.markerMedians(upsampled_file_path, igraph:::vcount(mst_graph), cols = c("marker1","marker2")) }