\name{impute.snps} \alias{impute.snps} \title{Impute snps} \description{ Given SNPs stored in an object of class \code{"SnpMatrix"} or \code{"XSnpMatrix"} and a set of imputation rules in an object of class \code{"ImputationRules"}, this function calculates imputed values. } \usage{ impute.snps(rules, snps, subset = NULL, as.numeric = TRUE) } \arguments{ \item{rules}{The imputation rules; an object of class \code{"ImputationRules"}} \item{snps}{The object of class \code{"SnpMatrix"} or \code{"XSnpMatrix"} containing the observed SNPs} \item{subset}{A vector describing the subset of subjects to be used. If \code{NULL} (default), then use all subjects} \item{as.numeric}{If \code{TRUE}, the output is a numeric matrix containing posterior expectations of the imputed SNPs. Otherwise the output matrix is of the same class as \code{snps} and contains uncertain genotype calls} } \value{ A matrix with imputed SNPs as columns. The imputed values are the estimated expected values of each SNP when coded 0, 1 or 2. } \references{ Wallace, C. et al. (2010) \emph{Nature Genetics}, \bold{42}:68-71 } \author{David Clayton \email{david.clayton@cimr.cam.ac.uk}} \seealso{\code{\link{snp.imputation}}} \examples{ # Remove 5 SNPs from a datset and derive imputation rules for them data(for.exercise) sel <- c(20, 1000, 2000, 3000, 5000) to.impute <- snps.10[,sel] impute.from <- snps.10[,-sel] pos.to <- snp.support$position[sel] pos.fr <- snp.support$position[-sel] imp <- snp.imputation(impute.from, to.impute, pos.fr, pos.to) # Now calculate the imputed values imputed <- impute.snps(imp, impute.from) } \keyword{models} \keyword{regression}