\name{mrnetb} \alias{mrnetb} \title{Maximum Relevance Minimum Redundancy Backward} \usage{mrnetb(mim)} \arguments{ \item{mim}{ A square matrix whose i,j th element is the mutual information between variables \eqn{Xi}{X_i} and \eqn{Xj}{X_j} - see \code{\link{build.mim}}.} } \value{\code{mrnetb} returns a matrix which is the weighted adjacency matrix of the network. In order to display the network, load the package Rgraphviz and use the following command: \cr plot( as( returned.matrix ,"graphNEL") ) } \description{ \code{mrnetb} takes the mutual information matrix as input in order to infer the network using the maximum relevance/minimum redundancy criterion combined with a backward elimination and a sequential replacement - see references. This method is a variant of mrnet. } \details{ } \author{ Patrick E. Meyer } \references{ Patrick E. Meyer, Daniel Marbach, Sushmita Roy and Manolis Kellis. Information-Theoretic Inference of Gene Networks Using Backward Elimination. The 2010 International Conference on Bioinformatics and Computational Biology. Patrick E. Meyer, Kevin Kontos, Frederic Lafitte and Gianluca Bontempi. Information-theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology, 2007. } \seealso{\code{\link{build.mim}}, \code{\link{clr}}, \code{\link{mrnet}}, \code{\link{aracne}}} \examples{ data(syn.data) mim <- build.mim(syn.data, estimator="spearman") net <- mrnetb(mim) } \keyword{misc}