\name{mrnet} \alias{mrnet} \title{Maximum Relevance Minimum Redundancy} \usage{mrnet(mim)} \arguments{ \item{mim}{ A square matrix whose i,j th element is the mutual information between variables \eqn{Xi}{X_i} and \eqn{Xj}{X_j} - see \code{\link{build.mim}}.} } \value{\code{mrnet} returns a matrix which is the weighted adjacency matrix of the network. In order to display the network, load the package Rgraphviz and use the following command: \cr plot( as( returned.matrix ,"graphNEL") ) } \description{ \code{mrnet} takes the mutual information matrix as input in order to infer the network using the maximum relevance/minimum redundancy feature selection method - see details. } \details{ The MRNET approach consists in repeating a MRMR feature selection procedure for each variable of the dataset. The MRMR method starts by selecting the variable \eqn{X_i}{Xi} having the highest mutual information with the target \eqn{Y}{Y}. In the following steps, given a set \eqn{\mathcal{S}}{S} of selected variables, the criterion updates \eqn{\mathcal{S}}{S} by choosing the variable \eqn{X_k}{Xk} that maximizes \eqn{ I(X_k;Y) - \frac{1}{|\mathcal{S}|}\sum_{X_i \in \mathcal{S}} I(X_k;X_i)}{% I(Xk;Y) - mean(I(Xk;Xi)), Xi in S.}\cr The weight of each pair \eqn{X_i,X_j}{Xi,Xj} will be the maximum score between the one computed when \eqn{X_i}{Xi} is the target and the one computed when \eqn{X_j}{Xj} is the target. } \author{ Patrick E. Meyer, Frederic Lafitte, Gianluca Bontempi } \references{ Patrick E. Meyer, Kevin Kontos, Frederic Lafitte and Gianluca Bontempi. Information-theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology, 2007. Patrick E. Meyer, Frederic Lafitte and Gianluca Bontempi. minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinformatics, Vol 9, 2008. H. Peng, F.long and C.Ding. Feature selection based on mutual information: Criteria of max-dependency, max relevance and min redundancy. IEEE transaction on Pattern Analysis and Machine Intelligence, 2005. } \seealso{\code{\link{build.mim}}, \code{\link{clr}}, \code{\link{aracne}}, \code{\link{mrnetb}}} \examples{ data(syn.data) mim <- build.mim(syn.data, estimator="spearman") net <- mrnet(mim) } \keyword{misc}