\name{normalizeRobustSpline} \alias{normalizeRobustSpline} \title{Normalize Single Microarray Using Shrunk Robust Splines} \description{ Normalize the M-values for a single microarray using robustly fitted regression splines and empirical Bayes shrinkage. } \usage{ normalizeRobustSpline(M,A,layout,df=5,method="M") } \arguments{ \item{M}{numeric vector of M-values} \item{A}{numeric vector of A-values} \item{layout}{list specifying the dimensions of the spot matrix and the grid matrix} \item{df}{degrees of freedom for regression spline, i.e., the number of regression coefficients and the number of knots} \item{method}{choices are \code{"M"} for M-estimation or \code{"MM"} for high breakdown point regression} } \details{ This function implements an idea similar to print-tip loess normalization but uses regression splines in place of the loess curves and uses empirical Bayes ideas to shrink the individual prtin-tip curves towards a common value. This allows the technique to introduce less noise into good quality arrays with little spatial variation while still giving good results on arrays with strong spatial variation. } \value{ Numeric vector containing normalized M-values. } \author{Gordon Smyth} \references{ The function is based on unpublished work by the author. } \seealso{ An overview of LIMMA functions for normalization is given in \link{05.Normalization}. } \examples{ \dontrun{ MA <- normalizeWithinArrays(RG) normM <- normalizeRobustSpline(MA$M[,1],MA$A[,1],MA$printer) } } \keyword{models}