\name{normalizeMedianAbsValues} \alias{normalizeMedianValues} \alias{normalizeMedianAbsValues} \title{Normalize Columns of a Matrix to have the Median Absolute Value} \description{ Performs scale normalization of an M-value matrix or an A-value matrix across a series of arrays. Users do not normally need to call these functions directly - use \code{normalizeBetweenArrays} instead. } \usage{ normalizeMedianValues(x) normalizeMedianAbsValues(x) } \arguments{ \item{x}{numeric matrix} } \value{ A numeric matrix of the same size as that input which has been scaled so that each column has the same median value (for \code{normalizeMedianValues}) or median-absolute value (for \code{normalizeMedianAbsValues}). } \details{ If \code{x} is a matrix of log-ratios of expression (M-values) then \code{normalizeMedianAbsValues} is very similar to scaling to equalize the median absolute deviation (MAD) as in Yang et al (2001, 2002). Here the median-absolute value is used for preference to as to not re-center the M-values. \code{normalizeMedianAbsValues} is also used to scale the A-values when scale-normalization is applied to an \code{MAList} object. } \author{Gordon Smyth} \seealso{ An overview of LIMMA functions for normalization is given in \link{05.Normalization}. } \examples{ M <- cbind(Array1=rnorm(10),Array2=2*rnorm(10)) normalizeMedianAbsValues(M) } \keyword{array}