\name{calculate.emPAI} \alias{calculate.emPAI} \alias{n.observable.peptides} \title{ emPAI approximate abundance calculations. } \description{ The Exponentially Modified Protein Abundance Index (emPAI) is a label free quantitative measure of protein abundance based on protein coverage by peptide matches. The original publication is Ishihama Y, et al., Proteomics (2005). } \usage{ calculate.emPAI(protein.group, protein.g = reporterProteins(protein.group), ...) n.observable.peptides(seq, nmc = 1, min.length = 6, min.mass = 800, max.mass = 4000, ...) } \arguments{ \item{protein.group}{ProteinGroup object. Its \code{@proteinInfo} slot \code{data.frame} must contain a \code{sequence} column to calculate the number of observable peptides per protein. } \item{protein.g}{Protein group identifiers.} \item{seq}{Protein sequence.} \item{nmc}{Number of missed cleavages.} \item{min.length}{Minimum length of peptide.} \item{min.mass}{Minimum mass of peptide.} \item{max.mass}{Maximum mass of peptide.} \item{\dots}{Further arguments to \code{\link{n.observable.peptides}}/\code{\link[OrgMassSpecR]{Digest}}.} } \details{ The formula is \deqn{emPAI = 10^{\frac{N <- {observed}}{N <- {observable}}} -1}{emPAI = 10^(N_observed/N_observable) -1} N_observed is the number of observed peptides - we use the count of unique peptide without consideration of charge state. N_observable is the number of observable peptides. Sequence cleavage is done using \code{\link[OrgMassSpecR]{Digest}}. } \value{ Named numeric vector of emPAI values. } \references{ Ishihama Y, et al., Proteomics (2005) } \author{ Florian P Breitwieser } \seealso{ \code{\link[OrgMassSpecR]{Digest}}, \code{\link{proteinInfo}}, \code{\link{getProteinInfoFromUniprot}}, \code{\link{calculate.dNSAF}}, \code{\link{ProteinGroup}} } \examples{ data(ibspiked_set1) protein.group <- proteinGroup(ibspiked_set1) calculate.emPAI(protein.group,protein.g=protein.g(protein.group,"CERU")) } \keyword{ ~emPAI }